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Abstract

In this thesis we present three new results:

(i) We define a stratification of abelian categories as an iterated system of rec-

ollements of abelian categories. This definition generalises the definitions

of categories of (equivariant) perverse sheaves as well as ε-stratified cate-

gories (and in particular highest weight categories) in the sense of Brundan-

Stroppel [BS18]. We give necessary and sufficient conditions for a stratifica-

tion of abelian categories to be equivalent to a category of finite dimensional

modules of a finite dimensional algebra - this generalises the main result of

Cipriani-Woolf [CW22].

(ii) We define a product of Schur algebra modules that corresponds under Schur-

Weyl duality to the Kronecker product of symmetric group modules. This

new product is a Schur algebra module theoretic version of Krause’s internal

product on the category of homogeneous strict polynomial functors defined

in [Kra13].

(iii) We give a characteristic-free version of Ginzburg’s [CG97, Proposition 4.2.5]

construction of the Schur algebra via the convolution product on the Borel-

Moore homology of smooth varieties related to the nilpotent cone N ⊂
gln(C). As an application, we give a new proof of Mautner’s [Mau14] equiv-

alence of categories between GLn-equivariant perverse sheaves on N and a

category of Schur algebra modules.
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Chapter 1

Introduction

1.1 Historical background

In his dissertation, Schur [Sch1901] establishes a connection between the poly-

nomial representations of GLn(C) of degree d and representations of the group

algebra, CSd, of the symmetric group. This conceptual bridge allowed Schur to

study the representation theory of GLn(C) using known results in the represen-

tation theory of Sd (see e.g. [Gre80, Introduction] for a more detailed survey of

Schur’s work and it’s influence on the development of the theory of Lie groups).

Green [Gre80], following the work of Carter and Lusztig [CL74], extended

the characteristic-zero results in Schur’s thesis to results that hold for any infinite

field k. In particular, let Poldk(GLn) be the category of polynomial representations

of GLn(k) of degree d (where n ≥ d) and let mod-kSd be the category of finite

dimensional right kSd-modules. Green [Gre80, Section 6.2] shows that the Schur-

Weyl duality functor

FSW := HomPoldk (GLn)
(
⊗d kn,−) : Poldk(GLn) → mod-kSd

is an exact essentially surjective functor - thus establishing an explicit connection

between the modular representation theory of Sd and the representation theory

of GLn.

An important ingredient in Green’s work is the use of an equivalence of cate-

gories between Poldk(GLn) and the category of finite dimensional modules of the
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Schur algebra

Sk(n, d) := EndkSd
(
⊗d kn).

Using the Schur algebra, one can extend the work of Green to the case that k
is any commutative ring. Indeed, arguing in the same way as Green, if k is any

commutative ring and n ≥ d then the functor

FSW = Hom(
⊗d kn,−) : Sk(n, d)-mod → mod-kSd

is an exact essentially surjective functor.

In [FS97], Friedlander and Suslin define the category, RepΓk
d, of strict polyno-

mial functors of degree d (the definition of this category is recalled in Section 3.7).

Moreover they show that, if n ≥ d, there is an equivalence of categories between

RepΓk
d and Sk(n, d)-mod. This result allows methods available in the study of

functors to be used in the study of Sk(n, d) modules (see [Tou14] for a survey of

such applications). One particular example, that is important to this thesis, is

Krause’s [Kra13] use of Day convolution to define an internal product

−⊗− : RepΓk
d × RepΓk

d → RepΓk
d.

The work in this thesis is inspired by the dissertations of Rebecca Reischuk

[Rei16] and Carl Mautner [Mau10].

In her dissertation, Reischuk [Rei16, Theorem 3.23] (see [AR17, Theorem 4.4]

for the published version) shows that the Schur-Weyl duality functor intertwines

Krause’s product on RepΓk
d with the Kronecker product −⊗k− on kSd modules.

That is, the following diagram of functors commutes:

RepΓk
d × RepΓk

d RepΓk
d

mod-kSd ×mod-kSd mod-kSd

−⊗−

FSW×FSW FSW

−⊗k−

This result suggests a new approach to the Kronecker product of symmetric group

modules - in particular the open problem of calculating Kronecker coefficients1.

1The Kronecker coefficients are the multiplicities of simple modules appearing in the Kronecker

product of simple modules.
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Unfortunately, the abstract nature of the definition of ⊗ suggests that this ideal

is still beyond reach.

A result in Mautner’s dissertation [Mau10, Theorem 1.3.1] (see [Mau14, The-

orem 1.1] for the published version) is that the category, PGLd
(N , k), of GLd(C)-

equivariant perverse sheaves on the nilpotent cone N ⊂ gld(C) is equivalent to

the category, Sk(n, d)-mod, of finite dimensional modules of the Schur algebra

Sk(n, d) if n ≥ d.

A natural question to ask is for a geometric definition of a product on PGLd
(N ,k)

that corresponds to Krause’s product on RepΓk
d. This thesis contains a collection

of results discovered whilst searching for (or daydreaming about) an answer to

this question. We believe these results are of independent interest.

1.2 Outline

The body of this thesis is partitioned into three chapters, corresponding to three

major results.

Chapter 2 studies iterated systems of recollements of abelian categories, that

we call stratifications of abelian categories. The main result of this chapter is to

give sufficient conditions for a stratification of abelian categories to have enough

projective objects (Theorem 2.3.9).

Chapter 3 recounts the theory of Schur algebra modules and constructs a Schur

algebra theoretic analogue of Krause’s product (Theorem 3.6.1).

Chapter 4 uses a characteristic-free version of Ginzburg’s construction of the

Schur algebra (Theorem 4.3.6) to define an equivalence of categories between

PGLd
(N ,k) and S(n, d)-mod for n ≥ d (Theorem 4.4.1). Our approach differs from

Mautner’s approach [Mau14, Theorem 1.1] in that we do not require the geometric

Satake correspondence (as defined in [MV07, Theorem 14.1]), and instead argue

using the geometry of the partial Springer resolutions.

A complete description of the original results in this thesis are given in Sections

1.3, 1.4, 1.5, which detail the results in Chapters 2, 3, 4 respectively. Chapters

2 and 3 are self-contained, while Chapter 4 relies on results in the preceding
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chapters.

1.3 Main results from Chapter 2

A recollement of abelian categories is a short exact sequence of abelian categories

0 AZ A AU 0
i∗ j∗

(1.1)

in which AZ is a Serre subcategory of A (with Serre quotient AU ), i∗ has both a

left and right adjoint, and j∗ has fully-faithful left and right adjoints.

Recollements of abelian (and triangulated) categories arise in many geometric

and representation theoretic contexts. This includes the construction of perverse

sheaves in [BBD82] (see also [MV86]), and the definition of highest weight cat-

egories [CPS88] and their generalisations (see e.g. [CPS96], [BS18]). In these

applications, one needs an iterated series of recollements. We formalise the idea

of iterated series of recollements by a construction we call a stratification of an

abelian category.

Definition 2.1.4. A stratification of an abelian category A by a non-empty finite

poset Λ consists of

(i) Abelian categories Aλ, for each λ ∈ Λ (which we call strata categories).

(ii) For each closed-downwards subposet Λ′ ⊂ Λ , there is a Serre subcategory

AΛ′ ↪→ A, in which A∅ = 0 and AΛ = A. Moreover, for each pair of

closed-downwards subposets Λ′
1 ⊂ Λ′

2 ⊂ Λ, there are inclusions of Serre sub-

categories AΛ′
1
↪→ AΛ′

2
, and for each maximal λ′ ∈ Λ′ there is a recollement

0 AΛ′\{λ′} AΛ′ Aλ 0

This definition of a stratification of an abelian category is original, however

the idea is implicitly used in work dating back to [BBD82] (examples are given in

Section 2.1).

In Chapter 2 we develop the theory of stratifications of abelian categories. We

list here the main original results from Chapter 2.
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Definition 2.2.1 defines the intermediate extension functor j!∗ : AU → A for a

recollement as in (1.1). This definition imitates the definition of the intermediate

extension functor in the theory of perverse sheaves. If A has a stratification by a

finite poset Λ, then for each λ ∈ Λ, there is a functor jλ!∗ : Aλ → A defined by the

composition

Aλ A{µ∈Λ | µ≤λ} Aj!∗

The following two results are proven using the intermediate-extension functor.

Proposition 2.2.4. Let A be an abelian category with a stratification by a finite

poset Λ. Every simple object L ∈ A is of the form jλ!∗Lλ, for a unique (up to

isomorphism) simple object Lλ ∈ Aλ and unique λ ∈ Λ.

Proposition 2.2.6. If A is an abelian category with a stratification by a finite poset,

then every object in A has a finite filtration by simple objects if and only if the

same is true of all the strata categories.

The following original result gives sufficient conditions for a category, A, ap-

pearing in a recollement as in (1.1) to have enough projectives.

Theorem 2.3.9. Consider a recollement:

0 AZ A AU 0
i∗ j∗

Suppose AU and AZ have finitely many simple objects and every object has a finite

filtration by simple objects. Suppose moreover that for any simple objects A,B in

A,

dimEndA(B) Ext
1
A(A,B) < ∞.

Then A has enough projectives if and only if both AU and AZ have enough pro-

jectives.2

As an application we obtain the following important Corollary.

2Since EndA(B) is a division ring, any EndA(B)-module is free. For an EndA(B)-module M ,

dimEndA(B) M is the rank of M as a free EndA(B)-module.
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Corollary 2.3.11. For any field k, a k-linear abelian category with a stratification

by a finite poset is equivalent to a category of finite dimensional modules of a finite

dimensional k-algebra if and only if the same is true for all strata categories.

As a special case we recover a result of Cipriani and Woolf [CW22, Theorem

4.6] (see Corollary 2.3.12) that says that a category of perverse sheaves (with

coefficients in a field) on a space stratified by finitely many strata is equivalent

to a category of finite dimensional modules of a finite dimensional k-algebra if

and only if the same is true for each category of finite type local systems on each

stratum.

For the remainder of this section fix an abelian category A with finitely many

simple objects, enough projectives and injectives, and admitting a stratification

by a poset Λ. Suppose furthermore that each object in A has a finite filtration

by simple objects. Let B be a set indexing the simple objects in A (up to isomor-

phism) and write L(b) for the simple object corresponding to b ∈ B. Define the

stratification function

ρ : B → Λ

that maps each b ∈ B to the corresponding λ ∈ Λ in which L(b) = jλ!∗Lλ(b) for

some simple object Lλ(b) ∈ Aλ.

For each λ ∈ Λ, define the Serre quotient functor jλ : A{µ∈Λ | µ≤λ} → Aλ,

and let jλ! : Aλ → A{µ∈Λ | µ≤λ} and jλ∗ : Aλ → A{µ∈Λ | µ≤λ} be the left and

right adjoints of jλ. By a slight abuse of notation, write jλ! : Aλ → A and

jλ∗ : Aλ → A for the functors obtained by postcomposing with the inclusion

functor A{µ∈Λ | µ≤λ} ↪→ A.

For b ∈ B and λ = ρ(b), define the standard and costandard objects

∆(b) := jλ! Pλ(b), ∇(b) := jλ∗ Iλ(b).

The following result follows from the proof of Theorem 2.3.9.

Porism 2.4.1. For each b ∈ B:

(i) The projective cover, P (b), of L(b) fits into a short exact sequence

0 → Q(b) → P (b) → ∆(b) → 0
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in which Q(b) has a filtration by quotients of ∆(b′) satisfying ρ(b′) > ρ(b).

(ii) The injective envelope, I(b), of L(b) fits into a short exact sequence

0 → ∇(b) → I(b) → Q′(b) → 0

in which Q′(b) has a filtration by subobjects of ∇(b′) satisfying ρ(b′) > ρ(b).

Theorem 2.5.2 gives a definition of highest weight category using the language

of stratifications of abelian categories. This result is essentially a rephrasing of

[Kra17, Theorem 3.4] using our terminology.

Theorem 2.5.2. If k is a field, then a k-linear abelian category A is a highest

weight category with respect to a finite poset Λ if and only if A has a stratification

with respect to Λ in which

(i) For each closed-downwards subset Λ′ ⊂ Λ, and objects X,Y in the Serre

subcategory AΛ′ ↪→ A,

Ext2AΛ′ (X,Y ) ≃ Ext2A(X,Y ).

(ii) Every strata category is equivalent to mod-Γλ for some finite dimensional

division algebra Γλ.

Brundan and Stroppel [BS18] define a generalization of highest weight cate-

gories called an ε-stratified category (this definition is recalled in Definition 2.4.2).

It would interesting to have necessary and sufficient conditions for an abelian cat-

egory A with a stratification by a poset Λ to be an ε-stratified category. An

answer to this problem is suggested in Conjecture 2.4.4.

1.4 Main results from Chapter 3

In Chapter 3 we recall the basic theory of the Schur algebra Sk(n, d) = EndSd
(
⊗d kn),

for a field k, and define a new product of Schur algebra modules corresponding

to Krause’s internal product of polynomial functors defined in [Kra13]. More

precisely, we define a product

−⊠− : Sk(m, d)-mod× Sk(n, d)-mod → Sk(mn, d)-mod

7



in which the following diagram of functors commutes.

Sk(m, d)-mod× Sk(n, d)-mod Sk(mn, d)-mod

mod-kSd ×mod-kSd mod-kSd

−⊠−

FSW×FSW FSW

−⊗k−

(1.2)

To state the definition of ⊠ we need some preliminary definitions. Firstly,

denote the standard basis of kn by {v1, . . . , vn}, and denote the standard basis

of kmn by {vij | i ∈ [m], j ∈ [n]}, where [m] = {1, . . . ,m}. Define the kSd-

equivariant isomorphism

θ :
⊗d km ⊗k

⊗d kn →
⊗d kmn

by

(vi1 ⊗ · · · ⊗ vid)⊗ (vj1 ⊗ · · · ⊗ vjd) 7→ vi1j1 ⊗ · · · ⊗ vidjd .

Define the algebra embedding

Θ : EndkSd
(
⊗d km)⊗k EndkSd

(
⊗d kn) ↪→ EndkSd

(
⊗d kmn)

by

Θ(f ⊗ g)(vi1j1 ⊗ · · · ⊗ vidjd) = θ(f(vi1 ⊗ · · · ⊗ vid)⊗ g(vj1 ⊗ · · · ⊗ vjd)).

The homogeneous external product

−⊠− : Sk(m, d)-mod× Sk(n, d)-mod → Sk(mn, d)-mod

is defined by induction along Θ. That is

M⊠N := Sk(mn, d)⊗Sk(m,d)⊗Sk(n,d) (M ⊗k N)

= Sk(mn, d)⊗k M ⊗k N/⟨Θ(f ⊗ g)⊗m⊗ n− 1⊗ f ·m⊗ g · n⟩

Theorem 3.6.1 says that diagram (1.2) commutes. Theorem 3.7.5 says that, under

the equivalence between Sk(n, d)-mod and RepΓk
d (for n ≥ d), the homogeneous

external product corresponds to Krause’s product on strict polynomial functors.
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To complement the construction of the homogeneous external product, we

define the embedding Θ : Sk(m, d)× Sk(n, d) → Sk(mn, d) in terms of generators

of the Schur algebra. We recall the definition of these generators now.

Let Ei, Fi :
⊗dCn →

⊗dCn be the endomorphisms given by the actions of

the Chevalley generators ei, fi on
⊗dCn under the natural gln(C)-action. Define

the set

Λ(n, d) := {(λ1, . . . , λn) ∈ Nn |
∑
i

λi = d}.

For λ ∈ Λ(n, d), let 1λ :
⊗dCn →

⊗dCn be the projection onto the kSd-invariant

subspace of
⊗dCn generated by v⊗λ1

1 ⊗ · · · ⊗ v⊗λn
n .

The Schur algebra SC(n, d) is generated by the Ei, Fi (i = 1, . . . , n−1) and the

1λ (λ ∈ Λ(n, d)). The Schur algebra SZ(n, d) is isomorphic to the Z-subalgebra of

SC(n, d) generated by the 1λ together with the elements

E
(r)
i :=

Er
i

r!
, F

(r)
i :=

F r
i

r!
.

Moreover, for a commutative ring k, there is an isomorphism

Sk(n, d) ≃ k⊗Z SZ(n, d)

and so each Schur algebra Sk(n, d) is generated by elements 1λ, E
(r)
i , and F

(r)
i .

Proposition 3.6.4 defines the embedding Θ : Sk(m, d)× Sk(n, d) → Sk(mn, d)

in terms of these generators.

1.5 Main results from Chapter 4

In Chapter 4 we give a new construction of Mautner’s [Mau14, Theorem 1.1]

equivalence of categories PGLd
(NGLd

, k) → Sk(n, d)-mod, when n ≥ d. To state

the main result we introduce some notation.

Let G = GLd(C) and let B ⊂ G be the Borel subalgebra consisting of upper

triangular invertible matrices. For each n ∈ N and λ ∈ Λ(n, d), let Pλ = Lλ⋉Uλ ⊂
G be the parabolic subgroup containing B and with Levi factor Lλ ≃ GLλ1 × · · ·×
GLλn .

9



Use lowercase fraktur letters to denote the Lie algebra of a Lie group denoted

by the corresponding uppercase letter.

Write NH ⊂ h for the nilpotent cone in a Lie algebra h, and set N := NG.

For a partition λ = (λ1, . . . , λm) of d, let Oλ ⊂ N be the G-orbit of the Jordan

matrix with Jordan blocks of sizes λ1, . . . , λm. Let λ∨ be the dual partition of λ.

Define the partial Grothendieck resolution

mλ : G×Pλ pλ → g; (g, x) 7→ gxg−1.

Consider also the following diagram in which the squares are Cartesian.

G×Pλ pλ g

N̆λ := G×Pλ NPλ
N

Ñλ := G×Pλ uλ Oλ∨

mλ

m̆λ

m̃λ

Define the perverse sheaves

Γλ := m̆λ!kN̆λ
[dimN ],

Λλ := m̃λ!kÑµ
[2 dimG/Pµ],

in PG(N ,k).
The following is the main result of Chapter 4.

Theorem 4.4.1. If n ≥ d, then the perverse sheaf

Γn,d :=
⊕

λ∈Λ(n,d)

Γλ

is a projective generator of PG(N , k), and Sk(n, d)
op ≃ EndPG(N ,k)(Γn,d).

In particular, the functor

HomPG(N ,k)(Γn,d,−) : PG(N , k) → Sk(n, d)-mod

is an equivalence of categories.
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Lemma 4.4.9 says that Γn,d is a projective generator. To prove Theorem

4.4.1 we use the geometric Ringel duality functor (as defined in [AM15]) to show

(Lemma 4.4.8) that

EndPG(N ,k)(
⊕

λ∈Λ(n,d)

Γλ) ≃ EndPG(N ,k)(
⊕

λ∈Λ(n,d)

Λλ).

It follows from a result of Ginzburg [CG97, Theorem 8.6.7] that there is a

natural isomorphism

HomPG(N ,k)(Λ
µ,Λλ) ≃ HBM

dim Ñλ+dim Ñµ
(Ñλ ×N Ñµ,k),

where composition of morphisms corresponds to the convolution product on Borel-

Moore cycles. Theorem 4.4.1 follows from the following result.

Theorem 4.3.6. There is an algebra isomorphism

Sk(n, d)
op ≃

⊕
λ,µ∈Λ(n,d)

HBM
dim Ñλ+dim Ñµ

(Ñλ ×N Ñµ, k),

where the algebra product on the right hand side is the convolution product.

Theorem 4.3.6 is shown in the case that k has characteristic zero by Ginzburg

[CG97, Proposition 4.2.5]. Our result is derived using Ginzburg’s result, together

with the observation that the isomorphism

SC(n, d)
op →

⊕
λ,µ∈Λ(n,d)

HBM
dim Ñλ+dim Ñµ

(Ñλ ×N Ñµ,C)

sends the generators of SZ(n, d)
op to fundamental classes of irreducible compo-

nents. The result follows by a simple argument using the dimensions of these

algebras.
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Chapter 2

Stratifications of abelian categories

A recollement of abelian categories is a short exact sequence of abelian categories

0 AZ A AU 0
i∗ j∗

in which AZ is a Serre subcategory of A (with Serre quotient AU ), i∗ has both a

left and right adjoint, and j∗ has fully-faithful left and right adjoints. In this case

we say that A is a gluing of AZ and AU .

A stratification of an abelian category A by a non-empty finite poset Λ consists

of

(i) Abelian categories Aλ, for each λ ∈ Λ.

(ii) For each closed-downwards subposet Λ′ ⊂ Λ , there is a Serre subcategory

AΛ′ ↪→ A, in which A∅ = 0 and AΛ = A. Moreover, for each pair of closed-

downwards subposets Λ′
1 ⊂ Λ′

2 ⊂ Λ, there are inclusions of Serre categories

AΛ′
1
↪→ AΛ′

2
, and for each maximal λ′ ∈ Λ′ there is a recollement

0 AΛ′\{λ′} AΛ′ Aλ 0 .

As an example, consider what it means for a category A to have a stratification

by the poset 1 ≤ 2 ≤ 3. Such a stratification consists of the following categories,

12



in which each row and column is a recollement:

0

A{1} ≃ A1

0 A{1,2} A A3 0

A2

0

j∗3

j∗2

For example, the category, A, of representations of the quiver • → • → • over

a field k, has a filtration by the poset 1 ≤ 2 ≤ 3. Indeed, define the quiver

representations:

∆1 = 0 → 0 → k, ∆2 = 0 → k → k, ∆3 = k → k → k,

and

∇1 = 0 → 0 → k, ∇2 = 0 → k → 0, ∇3 = k → 0 → 0.

The stratification on A is defined by setting the categories AΛ′ to be the Serre

subcategory of A generated by the ∆i in which i ∈ Λ′, and defining each Ai ≃
mod-EndA(∆i) ≃ mod-k. The Serre quotient functors are defined j∗3 = HomA(∆3,−)

and j∗2 = HomA(∆2,−). Note that the functors j∗i : A{1,...,i} → mod-k have fully-

faithful left adjoint ji! : mod-k → A{1,...,i} mapping k 7→ ∆i, and fully-faithful

right adjoint ji∗ : mod-k → A{1,...,i} mapping k 7→ ∇i.

Our definition of a stratification of abelian categories is original, however the

idea is implicitly used in work dating back to [BBD82]. Examples of stratifications

of abelian categories arise in the theory of perverse sheaves (see Example 2.1.7)

and in certain categories of modules (see Example 2.1.9). In particular, we’ll

prove that every highest weight category (or more generally every ε-stratified

category in the sense of Brundan-Stroppel [BS18]) with respect to a poset Λ has

a stratification by the poset Λ (Theorem 2.5.2). A long list of further examples

of recollements of abelian categories can be found in [Psa14, Section 2.1].

13



In Section 2.2 we define the intermediate extension functor j!∗ : AU → A and

develop some basic theory about recollements of abelian categories. We show that

the simple objects of A are all either simple objects in AZ or the intermediate

extension of simple objects in AU (Proposition 2.2.4). Moreover we show that

every object of A has finite length if and only if the same is true for AZ and AU

(Proposition 2.2.6). These results are well known in the theory of perverse sheaves

and the proofs here are almost identical to the standard proofs of these results in

the theory of perverse sheaves (see e.g. [Ach21, Chapter 3]).

In Section 2.3 we give new conditions for when the gluing of two abelian

categories with enough projectives has enough projectives (Theorem 2.3.9). This

generalises a result of Cipriani-Woolf [CW22, Theorem 4.6], which says that a

category of perverse sheaves (with coefficients in a field) on a space stratified by

finitely many strata has enough projectives if and only if the same is true for each

category of finite type local systems on each stratum.

In Section 2.4 we continue our study of abelian categories equipped with a

stratification and enough projectives (as well as some finiteness conditions). In

this setting, we define a set of standard and costandard objects of A indexed by

the simple objects of A. These do not satisfy properties as nice as those of stan-

dard/costandard objects in a highest weight category. For example, projective

indecomposable objects do not always have a filtration by standard objects. In-

stead they have filtrations by quotients of standard objects (Porism 2.4.1). Brun-

dan and Stroppel [BS18] define a framework for categories with a ‘nice’ theory

of standard and costandard objects - these they call ε-stratified categories. We

conclude Section 2.4 by reviewing their definition and conjecture when an abelian

category with a stratification is an ε-stratified category.

In Section 2.5 we show that a category A is a highest weight category with

respect to a poset Λ if and only if A has a stratification by Λ in which each

strata category has one simple object, and Ext2AΛ′ (X,Y ) ≃ Ext2A(X,Y ) for each

closed-downwards subposet Λ′ ⊂ Λ and objects X,Y in the Serre subcategory

AΛ′ ⊂ A. This result is essentially a rephrasing of a known result (see e.g. [Kra17,

Theorem 3.4]), and our proof does not differ from that of [Kra17, Theorem 3.4]

14



in a significant way.

Historically, the concept of a recollement of abelian categories was preceded

by the definition of a recollement of triangulated categories due to Beilinson,

Bernstein and Deligne [BBD82]. This is a generalisation of Grothendieck’s six

functors relating the constructible derived category, D(X), of sheaves on a variety

X with the constructible derived categories, D(U) and D(Z), of sheaves on an

open subvariety U ⊂ X and the closed complement Z := X\U . The conditions

defining a recollement of abelian categories are (possibly first) used in [BBD82,

Proposition 1.4.16]. This statement says that given a recollement of triangulated

categories with t-structure, one obtains a recollement of abelian categories on the

hearts of the t-structures by taking zero-th cohomology. We explain and prove

this result in Section 2.6.

2.1 Preliminaries

We begin with an axiomatic definition of recollement. The notation used in this

definition will be used throughout the paper.

Definition 2.1.1. A recollement of abelian categories consists of three abelian cat-

egories AZ , A and AU and functors:

AZ A AU
i∗=i!

i∗

i!

j!=j∗

j!

j∗

(2.1)

satisfying the conditions:

(R1) (i∗, i∗ = i!, i
!) and (j!, j

! = j∗, j∗) are adjoint triples.

(R2) The functors i∗ = i!, j!, j∗ are fully-faithful. Equivalently the adjunction

maps i∗i∗ → Id → i!i! and j∗j∗ → Id → j!j! are isomorphisms.

(R3) The functors satisfy j∗i∗ = 0 (and so by adjunction i∗j! = 0 = i!j∗).

15



(R4) The adjunction maps produce exact sequences for each object X ∈ A:

j!j
!X →X → i∗i

∗X → 0 (2.2)

0 → i!i
!X →X → j∗j

∗X (2.3)

Alternatively, condition (R4) can be replaced by the condition

(R4’) For any object X ∈ A, if j∗X = 0 then X is in the essential image of i∗.

A recollement of triangulated categories is defined in the same way as a recolle-

ment of abelian categories except that condition (R4) is replaced by the existence

of the triangles:

j!j
!X →X → i∗i

∗X → (2.4)

i!i
!X →X → j∗j

∗X → (2.5)

for each object X.

Remark 2.1.2. The interchangeability of (R4) and (R4’) follows from the following

argument. If j∗X = 0 then (R4) implies that i!i
!X ≃ X ≃ i∗i

∗X and so X is in

the essential image of i. Conversely let µ : j!j
! → Id and η : Id → i∗i

∗ be the

adjunction natural transformations. Then there is a commutative diagram

j!j
!X X cokµX 0

0 i∗i
∗X i∗i

∗(cokµX) 0

µX

η
j!j

!X ηX ηcokµX

in which the rows are exact. By applying j∗ to the top row we see that j∗ cokµX =

0 and so (R4’) implies that cokµX ≃ i∗i
∗(cokµX) ≃ i∗i

∗X. Equation (2.3) holds

by a similar argument.

Write AZ for the essential image of i∗. To reconcile Definition 2.1.1 with the

initial definition of recollement note that by (R2), AZ ≃ AZ , and by (R4’), AZ

is the kernel of the exact functor j∗ and is hence a Serre subcategory of A. A

particular consequence is that

Ext1AZ
(X,Y ) ≃ Ext1A(i∗X, i∗Y ) (2.6)
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for any X,Y ∈ AZ .

For k ∈ N, we call a recollement of abelian categories k-homological if for all

n ≤ k and X,Y ∈ AZ ,

ExtnAZ
(X,Y ) ≃ ExtnA(i∗X, i∗Y ).

Say that a recollement of abelian categories is homological if it is k-homological

for all k ∈ N. A study of homological recollements is given in [Psa14].

It will be useful to note that if we extend the sequences (2.2) and (2.3) to

exact sequences

0 → K → j!j
!X →X → i∗i

∗X → 0 (2.7)

0 → i!i
!X →X → j∗j

∗X → K ′ → 0 (2.8)

then K and K ′ are in AZ . Indeed, by applying the exact functor j! to (2.7) we

get that j!K = 0 and so i!i
!K ≃ K ≃ i∗i

∗K. Likewise by applying j∗ to (2.8) we

get that K ′ ∈ AZ .

Given a recollement of abelian or triangulated categories with objects and

morphisms as in (2.1), the opposite categories form the following recollement

Aop
Z Aop Aop

U

i∗=i!

i!

i∗

j!=j∗

j∗

j!

which we call the opposite recollement.

The following proposition describes a useful way to characterise the functors

i∗ and i! in any recollement.

Proposition 2.1.3. Suppose we have a recollement of abelian categories with objects

and morphisms as in (2.1). Then for any object X ∈ A:

(i) i∗i
∗X is the largest quotient object of X in AZ .

(ii) i!i
!X is the largest subobject of X in AZ .

Proof. By the adjunction (i∗, i
∗) and since i∗ is fully-faithful we have natural

isomorphisms for X ∈ A, Y ∈ AZ :

HomA(i∗i
∗X, i∗Y ) ≃ HomAZ

(i∗X,Y ) ≃ HomA(X, i∗Y )
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sending f to f ◦ η where η : X → i∗i
∗X is the adjunction unit. In particular any

morphism X → i∗Y factors through i∗i
∗X. Statement (i) follows. Statement (ii)

follows by taking the opposite recollement.

Definition 2.1.4. A stratification of an abelian/triangulated category A by a non-

empty finite poset Λ consists of the following data:

(i) An assignment of an abelian/triangulated category AZ to every closed-

downwards subset Z ⊂ Λ. Moreover, for each pair of closed-downwards sub-

sets Z1 ⊂ Z2 ⊂ Λ, there is a corresponding embedding iZ1,Z2∗ : AZ1 ↪→ AZ2 .

(ii) For each λ ∈ Λ an abelian/triangulated category Aλ. We call these strata

categories.

This data must satisfy the following conditions

(S1) A∅ = 0 and AΛ = A.

(S2) For each λ ∈ Λ and closed-downwards subset Z ⊂ Λ in which λ ∈ Z is

maximal, the functor i∗ = iZ\{λ},Z∗ fits into a recollement

AZ\{λ} AZ Aλ
i∗=i!

i∗

i!

j!=j∗

j!

j∗

Say that a stratification of an abelian category is k-homological (respectively

homological) if each of the recollements described in Condition (S2) are k-homological

(respectively homological).

We proceed with some important examples of recollements and stratifications.

We will often use without mentioning a result of Beilinson-Bernstein-Deligne

[BBD82, Proposition 1.4.16] that says that given a recollement of triangulated

categories with a t-structure one obtains a recollement on the hearts of the t-

structure by applying zero-th cohomology. A proof of this result is given in Section

2.6.
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Example 2.1.5 (Direct sum category). The simplest example of a recollement is

the direct sum of abelian categories:

A A⊕ B Bi∗=i!

i∗

i!

j!=j∗

j!

j∗

where i∗ = i! and j! = j∗ are the inclusion functors, and i∗ = i! and j! = j∗ are

projection functors.

Example 2.1.6 (Grothendieck’s derived functors). Let X be a variety. Let i : Z ↪→
X be the inclusion of a closed subvariety and let j : U ↪→ X be the inclusion of the

open complement. Write Db(X,k) for the bounded derived category of sheaves on

X with coefficients in a Noetherian ring k of finite global dimension. The direct

image i∗ : Db(Z, k) ↪→ Db(X,k) fits into a recollement of triangulated categories

Db(Z,k) Db(X,k) Db(U,k)i∗=i!

i∗

i!

j!=j∗

j!

j∗

Indeed this is the original and motivating example of a recollement of triangu-

lated categories. After taking zero-th cohomology we get a recollement of abelian

categories of sheaves:

Sh(Z, k) Sh(X,k) Sh(U,k)i∗=i!

H0i∗

H0i!

j!=j∗

H0j!

H0j∗

Likewise if we take zero-th perverse cohomology for any perversity function, we

get a recollement of the abelian categories of perverse sheaves.

Example 2.1.7 (Constructible sheaves with respect to a stratification). A strat-

ification of a quasiprojective complex variety X is a finite collection, {Xλ}λ∈Λ
of disjoint, smooth, connected, locally closed subvarieties, called strata, in which

X =
⋃

λ∈ΛXλ and for each λ ∈ Λ, Xλ is a union of strata. In this case we equip

Λ with the partial order

µ ≤ λ if Xµ ⊂ Xλ.
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We will use Λ to refer to the stratification of X.

For a variety X, let Locft(X,k) be the category of local systems on X of finite

type with coefficients in a field k. Recall that, by taking monodromy, Locft(X,k)
is equivalent to the category, k[π1(Xλ)]-modfg, of finitely generated k[π1(Xλ)]-

modules (see e.g. [Ach21, Theorem 1.7.9]).

Say that a sheaf F on X is constructible with respect to a stratification, Λ, of

X if F|Xλ
is a local system of finite type for each λ ∈ Λ. Write Db

Λ(X,k) for the
full triangulated subcategory of Db(X,k) consisting of objects F in which Hk(F)

is constructible with respect to Λ.

Say that a stratification, Λ, of X is good if for any λ ∈ Λ and any object

L ∈ Locft(Xλ,k), we have jλ∗L ∈ Db
Λ(X,k), where jλ : Xλ ↪→ X is the embed-

ding, and jλ∗ is the derived pushforward. It is difficult to tell in general whether

a stratification is good (see [Ach21, Remark 2.3.21] for a discussion of these dif-

ficulties). A stratification satisfying the Whitney regularity conditions [Wit65] is

good. In particular, if an algebraic group G acts on X with finitely many orbits

(each connected), then the stratification of X by G-orbits is good (see e.g. [Ach21,

Exercise 6.5.2]).

Let cl(Λ) be the set of closed-downwards subsets of a poset Λ. Given a good

stratification Λ on X, the triangulated category Db
Λ(X,k) has a stratification by Λ

with strata categories Dλ := Db(Locft(Xλ,k)) ≃ Db(k[π1(Xλ)]-modfg) and Serre

subcategories DΛ′ := Db
Λ′(
⋃

λ∈Λ′ Xλ) for each closed-downwards subposet Λ′ ⊂ Λ.

For a perversity function p : Λ → Z, the category pPΛ(X,k) of perverse

sheaves on X with respect to the stratification Λ (and perversity function p) is

the full subcategory of Db
Λ(X,k) consisting of complexes F in which for any strata

hλ : Xλ ↪→ X:

(i) Hd(h∗λF) = 0 if d > p(λ),

(ii) Hd(h!λF) = 0 if d < p(λ),

where Hd(F) refers to the d-th cohomology sheaf of F . The category A =

pPΛ(X,k) is abelian and has a stratification by Λ, with strata categories Aλ =

Locft(Xλ, k)[p(λ)] ≃ k[π1(Xλ)]-modfg (see e.g. Theorem 2.6.3).
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Example 2.1.8 (G-equivariant perverse sheaves). Another example of a stratifica-

tion arises in the theory of equivariant perverse sheaves as defined in [BL94]. We

will briefly review this theory. We recommend the reader consult [Ach21, Chapter

6] for more details.

For a complex algebraic group G and quasiprojective complex G-variety X,

a G-equivariant perverse sheaf on X is, roughly speaking, a perverse sheaf on

X with a G-action compatible with the G-action on X (see e.g. [Ach21, Def-

inition 6.2.3] for a precise definition). The category, PG(X,k) of G-equivariant

perverse sheaves is the heart of a t-structure on the G-equivariant derived cate-

gory, DG(X,k) defined by Bernstein-Lunts [BL94]. For a G-equivariant map of

G-varieties h : X → Y , there are equivariant versions of the (proper) pushforward

and (proper) pullback functors: h∗, h!, h
!, h∗. If i : Z ↪→ X is the inclusion of a

G-invariant closed subvariety with open complement j : U ↪→ X, then there is a

recollement of triangulated categories

Db
G(Z, k) Db

G(X,k) Db
G(U,k)

i∗=i!

i∗

i!

j!=j∗

j!

j∗

If X is a homogeneous G-variety, then every G-equivariant perverse sheaf is a

finite type local system (shifted by dimCX). Moreover, in this case,

PG(X,k) ≃ k[Gx/(Gx)◦]-modfg, (2.9)

where Gx ⊂ G is the stabilizer of a point x ∈ X, and (Gx)◦ is the connected

component of Gx containing the identity element (see e.g. [Ach21, Proposition

6.2.13] for a proof of this statement).

Suppose G acts on X with finitely many orbits (each connected). Let Λ be a

set indexing the set of G-orbits in X, and write Oλ for the orbit corresponding

to λ ∈ Λ. Consider Λ as a poset with the closure order: λ ≤ µ if Oλ ⊂ Oµ.

Then the category A = PG(X,k) has a stratification with strata categories Aλ =

PG(Oλ,k) ≃ k[Gx/(Gx)◦]-modfg (where x ∈ Oλ).

Example 2.1.9 (Modules with idempotents). For a ring A, let Mod-A be the cat-

egory of all right A-modules, and mod-A be the category of finitely presented
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right A-modules. Let e be an idempotent in A, and define the inclusion functor

i∗ : Mod-A/AeA → Mod-A. Note that Mod-A/AeA is equivalent to the Serre

subcategory of Mod-A consisting of modules annihilated by e. There is a corre-

sponding Serre quotient j∗ : Mod-A → Mod-eAe defined

j∗ := HomA(eA,−) ≃ −⊗A Ae.

i.e. j∗M = Me for any object M ∈ Mod-A. These functors fit into a recollement

of abelian categories:

Mod-A/AeA Mod-A Mod-eAe
i∗=i!

i∗

i!

j!=j∗

j!

j∗

where for any right A-module M :

(i) i∗M is the largest quotient, N , of M in which Ne = 0.

(ii) i!M is the largest subobject, N , of M in which Ne = 0.

Moreover j! := −⊗eAe eA and j∗ := HomeAe(Ae,−).

IfA is right artinian and has enough injectives then the inclusion i∗ : mod-A/AeA →
mod-A fits into a recollement

mod-A/AeA mod-A mod-eAe
i∗=i!

i∗

i!

j!=j∗

j!

j∗

in which j∗ has left adjoint j! = − ⊗eAe eA (see e.g [Kra17, Lemma 2.5]). This

recollement is homological if and only if A/AeA ⊗L
A A/AeA = A/AeA [GL91,

Theorem 4.4]. This holds in particular if AeA is a projective A-module (see e.g.

[Kra17, Lemma 2.7]).

2.2 The intermediate-extension functor

Consider again the recollement:

AZ A AU
i∗=i!

i∗

i!

j!=j∗

j!

j∗

(2.10)
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In this section we study the full subcategory, AU ↪→ A, whose objects have no

subobjects or quotients in AZ := im i∗. The main result of this section (Propo-

sition 2.2.3(ii)) is that the restricted functor j∗ : AU → AU is an equivalence of

categories. The quasi-inverse j!∗ : AU → AU is defined as follows.

Definition 2.2.1 (j!∗ : AU → AU ). For an object X ∈ AU , let 1X : j!X → j∗X be

the morphism corresponding to the identity on X under the isomorphism

HomA(j!X, j∗X) ≃ HomAU
(X, j∗j∗X) ≃ HomAU

(X,X).

Define

j!∗X := im(1X : j!X → j∗X) ∈ A.

It is easy to check that if X ∈ AU then j!∗X ∈ AU . Indeed as i!j∗X = 0, j∗X

has no subobjects in AZ . In particular, as j!∗X is a subobject of j∗X it cannot

have any subobjects in AZ . Likewise as j!∗X is a quotient of j!X it cannot have

any quotients in AZ . We call the functor j!∗ : AU → A, the intermediate-extension

functor.

Remark 2.2.2. Not every subquotient of an object in AU need be in AU . In

particular, an object in AU may still have simple composition factors in AZ .

Proposition 2.2.3. Suppose we have a recollement of abelian categories with objects

and morphisms as in (2.10). Then

(i) If X ∈ A has no nonzero quotient objects in AZ , and Y ∈ A has no nonzero

subobjects in AZ (i.e. i∗X = 0 and i!Y = 0), then:

HomA(X,Y ) ≃ HomAU
(j∗X, j∗Y ).

(ii) j∗ : AU → AU is an equivalence of categories with quasi-inverse j!∗ : AU →
AU .

Proof. If i∗X = 0 then (2.7) gives an exact sequence

0 → K → j!j
!X → X → 0
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in which K ≃ i!i
!K. So applying Hom(−, Y ) we get the exact sequence

0 → Hom(X,Y ) → Hom(j!j
!X,Y ) → Hom(i!i

!K,Y )

Applying adjunctions gives the exact sequence

0 → Hom(X,Y ) → Hom(j!X, j!Y ) → Hom(i!K, i!Y )

Statement (i) follows as i!Y = 0.

A corollary of statement (i) is that j∗ : AU → AU is fully-faithful. To show

that j∗ is essentially surjective it suffices to show that for any object X ∈ AU ,

j∗j!∗X ≃ X. Now, as j∗ is exact:

j∗j!∗X = j∗ im(j!X → j∗X) ≃ im(j∗j!X → j∗j∗X) ≃ im(Id : X → X) = X

and so (ii) follows.

The following result follows immediately from the previous proposition.

Proposition 2.2.4. Suppose we have a recollement of abelian categories as in (2.10).

If L ∈ AU is a simple object, then j!∗L is a simple object in A. Moreover all the

simple objects of A are either of the forms:

(i) i∗L for a simple object L ∈ AZ .

(ii) j!∗L for a simple object L ∈ AU .

The following properties of the intermediate-extension functor will be useful.

Proposition 2.2.5. Suppose we have a recollement of abelian categories as in (2.10).

Then

(i) The functor j!∗ : AU → A maps injective morphisms to injective morphisms

and surjective morphisms to surjective morphisms.

(ii) If X ∈ A has no nonzero quotient objects in AZ then there is a canonical

short exact sequence:

0 → i!i
!X → X → j!∗j

∗X → 0
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(iii) If X ∈ A has no nonzero subobjects in AZ then there is a canonical short

exact sequence:

0 → j!∗j
∗X → X → i∗i

∗X → 0

Proof. Let f : X → Y be a map in AU and define objects K1, K2 in A by the

exact sequence:

0 → K1 → j!∗X → j!∗Y → K2 → 0

To prove statement (i) it suffices to show that if j∗Ki = 0 thenKi = 0. If j∗Ki = 0

then by (R4’), K1 ≃ i∗i
∗K1 and K2 ≃ i!i

!K2. Then each Ki = 0 since j!∗X and

j!∗Y are in AU

To prove statement (ii), let X ∈ A have no nonzero quotients in AZ and

consider the short exact sequence

0 → i!i
!X → X → K → 0

Applying i! to the sequence we see that i!K = 0 and so K ∈ AU . So K ≃
j!∗j

∗K and (by applying j∗ to this sequence) j∗X ≃ K. Statement (ii) follows

immediately. The proof of statement (iii) is similar.

Say that an abelian category is a length category if every object has a finite

filtration by simple objects.

Proposition 2.2.6. Suppose we have a recollement of abelian categories as in (2.10).

Then A is a length category if and only if both AZ and AU are length categories. In

particular if A has a stratification by a finite poset Λ, then A is a length category

if and only if all the strata categories are length categories.

Proof. Let X be an object in A and let K be defined by the short exact sequence:

0 → i!i
!X → X → K → 0

Then i!K = 0 and so applying Proposition 2.2.5(iii) we get the short exact se-

quence

0 → j!∗j
∗K → K → i∗i

∗K → 0
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In particular if every object in AZ and every object in AU has a finite filtration

by simple objects, then so does K and hence so does X. The converse statement

is obvious.

The last statement in the proposition follows by Noetherian induction.

2.3 Recollements with enough projectives/injectives

In this section we study the relationship between projective covers of objects in the

different categories making up a recollement. More precisely, let A be a category

fitting into a recollement as in (2.10). Proposition 2.3.5 says that if A has enough

projectives/injectives then so does AU . Proposition 2.3.6 says that if A is a Krull-

Schmidt category then if A has enough projectives/injectives then so does AZ .

Proposition 2.3.7 says that if X ∈ AU has a projective cover P in AU then j!P is

a projective cover in A of j!∗X.

Unfortunately it is not easy to find a projective cover in A of an object i∗X ∈
AZ , even if a projective cover of X exists in AZ . Theorem 2.3.9 gives sufficient

conditions for when such a projective cover exists.

2.3.1 Projective covers

Recall that a surjection ϕ : X → Y is essential if for any morphism α : X ′ → X,

if ϕ ◦ α is surjective then α is surjective. Equivalently ϕ : X → Y is essential if

for any subobject U ⊂ X, if U +kerϕ = X then U = X. If P → X is an essential

surjection and P is projective then we call P (or more accurately the morphism

P → X) a projective cover of X. The projective cover of X (if it exists) factors

through every other essential cover of X, and is unique up to isomorphism.

If L ∈ A is a simple object and P is projective then ϕ : P → L is a projective

cover if and only if the following equivalent conditions hold:

(i) kerϕ is the unique maximal subobject of P .

(ii) The endomorphism ring of P is local.

See e.g. [Kra15, Lemma 3.6] for a proof of these facts.

26



The dual concept of an essential surjection is called an essential extension. If

X → I is an essential extension and I is injective then this extension is called the

injective envelope of X.

An abelian category has enough projectives (resp. enough injectives) if every

object has a projective cover (resp. injective envelope).

An abelian category A is a Krull-Schmidt category if every object is a finite

direct sum of objects with local endomorphism rings. For example, any abelian

length category is a Krull-Schmidt category.

In a Krull-Schmidt category, the projective covers of simple objects are exactly

the projective indecomposable objects. Moreover a Krull-Schmidt category A has

enough projectives if and only if every simple object has a projective cover. We

will need the following characterisation of projective covers of simple objects in

Krull-Schmidt categories.

Proposition 2.3.1. Let A be a Krull-Schmidt category. Let P ∈ A be a projective

object and L ∈ A be a simple object. A map P → L is a projective cover if and

only if for any simple object L′:

dimEndA(L′)HomA(P,L
′) =

1 if L = L′,

0 otherwise.
(2.11)

Remark 2.3.2. Recall that any module of a division ring is free. For a module M ,

of a division ring D, the dimension dimD M is the rank of M as a free D-module.

Proof of Proposition 2.3.1. Suppose we have a projective cover ϕ : P → L. Since

kerϕ is the unique maximal subobject of ϕ, HomA(P,L
′) = 0 whenever L ̸= L′.

To show equation (2.11), it remains to show that the EndA(L)-equivariant map

− ◦ ϕ : EndA(L) → HomA(P,L)

is an isomorphism. Since ϕ is a surjection this map is injective. To show surjec-

tivity, let f ∈ HomA(P,L) be nonzero. Then as ker f is a maximal subobject of

P , kerϕ ⊂ ker f , and so f factors through ϕ.

Conversely, if (2.11) holds, then if P = P1⊕P2, only one Pi can have a simple

quotient and the other must be zero. In particular, P is indecomposable.

27



2.3.2 Ext-finiteness

To state the main result of this section (Theorem 2.3.9) we need the concept of

Ext-finiteness. In this section we recall this definition and give two propositions

about Ext-finiteness (Propositions 2.3.3 and 2.3.4) that will be needed in the

discussion following Theorem 2.3.9.

For k ∈ N, say that an abelian category A is Extk-finite (or Hom-finite in the

case k = 0) if for any simple objects A,B in A,

dimEndA(B) Ext
k
A(A,B) < ∞.

Note that if A is a k-linear category, for some field k, then

dimEndA(B) Ext
k
A(A,B) =

dimk Ext
k
A(A,B)

dimk EndA(B)
.

So A is Extk-finite whenever dimk Ext
k
A(A,B) < ∞ for every simple object

A,B. The converse is true if the endomorphism ring of every simple object has

finite k-dimension (e.g. if k is algebraically closed).

The following two propositions give useful criteria for when a category is Extk-

finite.

Proposition 2.3.3. Any Hom-finite abelian category with enough projectives is

Extk-finite for every k ∈ N.

Proof. Let X,Y be simple objects in A. Consider a projective presentation

0 → K → P → X → 0

Then as ExtkA(P, Y ) = 0, we get that ExtkA(X,Y ) embeds into (or is isomorphic

to) Extk−1
A (K,Y ) for each k > 0. The result follows by induction.

Say that a k-linear abelian category is finite over k if A is a Hom-finite

length category with enough projectives and finitely many simple objects. It

is well-known that A is finite over k if and only if there is a finite-dimensional

k-algebra A in which A is equivalent to the category, A-mod, of modules that

are finite dimensional as k-vector spaces. Indeed, if {Pλ}λ∈Λ are the projective
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indecomposables in A (up to isomorphism), then A = EndA(
⊕

λ∈Λ Pλ)
op and

HomA(
⊕

λ∈Λ Pλ,−) : A ≃ A-mod. Note that there is a contravariant equivalence

Homk(−, k) : A-mod → Aop-mod. In particular, any finite abelian category has

enough injectives.

Proposition 2.3.4. Let k be a field and let A be a k-linear abelian category with a

stratification in which every strata category is a finite abelian category. Then A
is Ext1-finite.

Proof. By the assumptions on the strata categories, A has finite dimensional Hom-

spaces. Suppose A has a recollement with objects and morphisms as in (2.10).

Suppose AU and AZ have enough projectives, and AU has enough injectives. By

Proposition 2.3.3, both AZ and AU are Ext1-finite. We just need to show that A
is Ext1-finite. It suffices to show that dimk Ext

1
A(X,Y ) < ∞ for all simple objects

X,Y .

Since AZ is a Serre subcategory of A, this is true whenever X and Y are

both in AZ . Let L ∈ AU be simple and let j!∗L have projective and injective

presentations:

0 → K → j!P → j!∗L → 0

0 → j!∗L → j∗I → K ′ → 0

The projective presentation implies that HomA(K,Y ) surjects onto Ext1A(j!∗L, Y ).

The injective presentation implies that HomA(Y,K
′) surjects onto Ext1A(Y, j!∗L).

The result follows.

2.3.3 Main results

This section contains our original results concerning recollements and projective

covers.

Proposition 2.3.5. Suppose A is an abelian category with a recollement as in

(2.10). Then

(i) If X → Y is an essential surjection in A and i∗Y = 0 then i∗X = 0 and

j!X → j!Y is an essential surjection.
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(ii) If P ∈ A is projective and i∗P = 0 then j!P ∈ AU is projective. In particular

if P → X is a projective cover in A and i∗X = 0 then j!P → j!X is a

projective cover in AU .

In particular, if A has enough projectives then so does AU .

Proof. Let ϕ : X → Y be an essential surjection in A and suppose i∗Y = 0. To

show that i∗X = 0 it suffices to show that the canonical map ϵX : j!j
!X → X

is surjective. This follows from the following commutative diagram since ϕ is

essential.

X Y

j!j
!X j!j

!Y
j!j

!ϕ

ϵX ϵY

ϕ

Let α : X ′ → j!X be a morphism in AU , in which j!(ϕ) ◦ α : X ′ → j!Y is

surjective. Then ϵY ◦ j!j
!(ϕ) ◦ j!α : j!X

′ → Y is surjective and so (since ϕ is

essential) ϵX ◦ j!α : j!X
′ → X is surjective. Hence j!(ϵX ◦ j!α) ≃ α : X ′ → j!X is

surjective. This proves (i).

If P ∈ A is projective and i∗P = 0 then the functor

HomAU
(j!P,−) ≃ HomA(j!j

!P, j!(−)) ≃ HomA(P, j!(−)) : AU → Z-mod

is exact. Here the last isomorphism follows from the sequence (2.7). It follows

that j!P is projective. Statement (ii) follows.

Proposition 2.3.6. Suppose A is a Krull-Schmidt category with a recollement of

abelian categories as in (2.10). If P → L is a projective cover in A of a simple

object L ∈ AZ , then i∗P → i∗L is a projective cover in AZ . In particular, if A
has enough projectives then so does AZ .

Proof. Since i∗ is the left adjoint of an exact functor it preserves projective ob-

jects. For any simple object L′ ∈ AZ , HomAZ
(i∗P, i∗L′) = HomA(P, i∗i

∗L′) =

HomA(P,L
′). The result follows.
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Proposition 2.3.7. Suppose A is an abelian category with a recollement as in

(2.10). Let X and Y be objects in AU . If X → Y is an essential surjection

in AU then the composition j!X → j!∗X → j!∗Y is an essential surjection in A.

In particular:

(i) The canonical surjection j!X → j!∗X is essential.

(ii) If P → X is a projective cover of X in AU then j!P → j!X → j!∗X is a

projective cover of j!∗X in A.

Proof. Let ϕ : X → Y be an essential surjection in AU . The map ϕ′ : j!X →
j!∗X → j!∗Y is surjective by Proposition 2.2.5(i). Let α : X ′ → X be a morphism

in which ϕ′ ◦ α is surjective. Now, j!(ϕ′) = ϕ : X → Y and since j! is exact,

j!(ϕ′ ◦ α) = ϕ ◦ j!(α) : j!X ′ → Y is surjective. Since ϕ is essential it follows that

j!(α) : j!X ′ → X is surjective in AU and so j!j
!(α) : j!j

!X ′ → j!X is surjective in

A. The surjectivity of α follows from the commutative triangle

j!j
!X ′ j!X

X ′

j!j
!(α)

α

in which the downward arrow is the adjunction counit.

The following result holds by an almost identical argument.

Proposition 2.3.8. The intermediate-extension functor preserves essential surjec-

tions and essential extensions.

The following is the main result of this section.

Theorem 2.3.9. Let A be an abelian length category with finitely many simple ob-

jects, and a recollement of abelian categories as in (2.10). If A is Ext1-finite then

A has enough projectives if and only if both AU and AZ have enough projectives.

Dually if Aop is Ext1-finite then A has enough injectives if and only if both AU

and AZ have enough injectives.
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Before giving the proof of this theorem we will explain one important in-

gredient: the universal extension. Let A,B be objects in an abelian category

A in which EndA(B) is a division ring and d := dimEndA(B) Ext
1
A(A,B) < ∞.

We form the universal extension E ∈ Ext1A(A,B
⊕d) by the following process.

First let E1, . . . , Ed ∈ Ext1A(A,B) be an EndA(B)-basis. The diagonal map

∆ : A → A⊕d induces a map Ext1A(A
⊕d, B⊕d) → Ext1A(A,B

⊕d). Let E be the

image of E1⊕· · ·⊕Ed under this map. That is we have the commutative diagram

with exact rows.

0 B⊕d
⊕

iEi A⊕d 0

0 B⊕d E A 0

Id ∆

⌜

Note that the EndA(B)-equivariant map HomA(B
⊕d, B) → Ext1A(A,B) induced

by the short exact sequence

0 → B⊕d → E → A → 0

is surjective (this is easy to check on the basis of Ext1A(A,B)).

When B1, . . . , Bn are objects in A in which each ring EndA(Bi) is a division

ring and di := dimEndA(Bi) Ext
1
A(A,Bi) < ∞, we also talk about a universal

extension E ∈ Ext1A(A,
⊕

iB
⊕di
i ) constructed in the following way. Let Ei ∈

Ext1A(A,B
⊕di
i ) be a universal extension (as defined in the previous paragraph) and

define E to be the image of E1 ⊕ · · · ⊕ En under the map Ext1A(
⊕

iA,
⊕

iB
⊕di) →

Ext1A(A,
⊕

iB
⊕di) induced by the diagonal map ∆ : A → A⊕d. Then E has the

property that the short exact sequence

0 →
⊕
i

B⊕di → E → A → 0

induces a surjection HomA(
⊕

iB
⊕di
i , Bj) → Ext1A(A,Bj) for each j = 1, . . . , n.

Dually, if EndA(A)op is a division ring and dimEndA(A)op Ext
1(A,B) < ∞ then

one can form a universal extension E ′ ∈ Ext1A(A
⊗d, B) using the codiagonal map

δ : B⊕d → B instead of the diagonal map.
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Proof of Theorem 2.3.9. Suppose that AU and AZ have enough projectives.

Suppose AZ has simple objects L1, . . . , Lm with projective covers P̄1, . . . , P̄m

in AZ . Suppose AU has simple objects Lm+1, . . . , Lm+n. By Proposition 2.3.7

every simple object in AU has a projective cover in A. It suffices to construct a

projective cover in A of each simple object in AZ . This amounts to finding, for

each 1 ≤ t ≤ m, a projective object, Pt, whose unique simple quotient is Lt.

Fix 1 ≤ t ≤ m.

Step 1. Define Pt. For simple object Lm+k ∈ AU , let Pm+k denote its projec-

tive cover in A. Define Q to be a maximal length quotient of

P :=

n⊕
k=1

P
⊕ dimEndA(Lm+k) Ext

1
A(P̄t,Lm+k)

m+k

in which there is an extension

0 → Q → E → P̄t → 0 (2.12)

inducing an isomorphism HomA(Q,L) ≃ Ext1A(P̄t, L) for each L ∈ AU . That is

0 = HomA(P̄t, L) ≃ HomA(E , L) and Ext1A(E , L) injects into Ext1A(Q,L).

Let Pt be any choice of such E .
Step 2. Pt is well-defined. To show that the maximal quotient Q exists, we

just need to find one quotient of P with the required property. Then since A is a

length category there exists a maximal length quotient with the required property.

Since A has finite Ext1-spaces, we can let

R =
n⊕

k=1

L
⊕ dimEndA(Lm+k) Ext

1
A(P̄t,Lm+k)

m+k

and form the universal extension

0 → R → E → P̄t → 0

Since this is a universal extension it induces a surjection HomA(R,Lm+k) →
Ext1A(P̄t, Lm+k) for each Lm+k ∈ AU . This map is an isomorphism since

dimEndA(Lm+k)HomA(R,Lm+k) = dimEndA(Lm+k) Ext
1
A(P̄t, Lm+k).
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Step 3. Pt has unique simple quotient Lt. By definition of Pt and by the

(i∗, i∗)-adjunction, for any simple module L ∈ A:

HomA(Pt, L) ≃ HomA(P t, L) ≃ HomA(P t, i∗i
∗L)

and so the only simple quotient of Pt is Lt with multiplicity one.

Step 4. Pt is projective. We show that Ext1A(Pt, L) = 0 for each simple L ∈ A.

For any simple L ∈ A there is an exact sequence

0 → Ext1A(Pt, L) → Ext1A(Q,L) → Ext2A(P̄t, L) (2.13)

Indeed if L ∈ AU then this holds because HomA(Q,L) ≃ Ext1A(P̄t, L). If L ∈ AZ

then (2.13) holds since AZ is a Serre subcategory of A and so Ext1A(P̄t, L) = 0.

It suffices to show that the third map in (2.13) is injective for any L ∈ A.

Suppose for contradiction that there is a nontrivial extension

0 → L → Q′ → Q → 0 (2.14)

in the kernel of this map. Then there is an object E ∈ A fitting into the following

diagram

0 0 0

0 L Q′ Q 0

0 L E Pt 0

0 0 P̄t P̄t 0

0 0 0

(2.15)

in which each row and column is exact. For each L′ ∈ AU the sequence (2.14)

induces an exact sequence

0 → HomA(Q,L′) → HomA(Q
′, L′) → HomA(L,L

′)

Of course, HomA(L,L
′) = 0 if L ̸= L′. If L = L′ the third map must be zero.

Indeed if f : L → L factors through the inclusion ι : L → Q′ via a map g : Q′ → L,
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then f−1 ◦ g : Q′ → L is a retraction of ι. This contradicts the assumption that

(2.14) does not split. Hence, for any L′ ∈ AU , the middle column of (2.15) induces

an isomorphism

HomA(Q
′, L′) ≃ HomA(Q,L′) ≃ Ext1A(P̄t, L

′). (2.16)

Since P is projective the quotient P → Q fits into the diagram

P

Q′ Q

φ

Now φ cannot be surjective, as, by (2.16), this would contradict the maximality

of Q. Thus the image of φ is isomorphic to Q and so the sequence (2.14) splits.

This is a contradiction. Hence Pt is projective.

Corollary 2.3.10. Let A be an abelian category with a stratification in which every

strata category is a length category, and has finitely many simple objects.

If A is Ext1-finite (respectively Aop is Ext1-finite) then A has enough pro-

jectives (respectively injectives) if and only if every strata category has enough

projectives (respectively injectives).

Proof. For λ ∈ Λ, let jλ!∗ : Aλ → A be the composition

Aλ A{λ} Aj!∗

where {λ} = {µ ∈ Λ | µ ≤ λ}.
By Proposition 2.2.6, every category AΛ′ (for closed Λ′ ⊂ Λ) satisfies the

conditions of Theorem 2.3.9. So we can obtain a projective cover in A of any

simple object jλ!∗L by repeatedly applying the construction in the proof of Theorem

2.3.9 to larger and larger Serre subcategories of A.

The following corollary follows immediately from Proposition 2.3.4 and Corol-

lary 2.3.10.

Corollary 2.3.11. Let A be a k-linear abelian category with a stratification. Then

A is finite over k if and only if the same is true of every strata category.
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From this result we recover the following result of Cipriani-Woolf.

Corollary 2.3.12 (Corollary 5.2 of [CW22]). Let X be a variety with a good strat-

ification X =
⋃

λ∈ΛXλ, and k be a field. Then the category P (X,k) of perverse

sheaves (for any perversity function) is finite over k if and only if each category

k[π1(Xλ)]-modfg is finite over k.

For example, if X has a stratification X =
⋃

λ∈ΛXλ in which each Xλ has

finite fundamental group, then the category P (X,k) is finite over k.

Corollary 2.3.13. Let G be an algebraic group and let X be a G-variety with finitely

many orbits, each connected. Let k be a field. The category, PG(X,k), of G-

equivariant perverse sheaves is finite over k if and only if for each G-orbit Oλ and

x ∈ Oλ, the category k[Gx/(Gx)◦]-modfg is finite over k.

2.4 Standard and costandard objects

In this section we focus our attention on abelian length categories A with finitely

many simples, enough projectives and injectives, and admitting a stratification

by a poset Λ. For such a category, let B be a set indexing the simple objects up

to isomorphism. Let L(b) be the simple object corresponding to b ∈ B. Let P (b)

and I(b) be the projective cover and injective envelope of L(b).

For each λ ∈ Λ, write A≤λ := A{µ∈Λ | µ≤λ} and let jλ! : Aλ → A be the

composition

Aλ A≤λ Aj!

Define jλ∗ : Aλ → A and jλ!∗ : Aλ → A likewise. Let jλ : A≤λ → Aλ denote the

Serre quotient functor.

By Proposition 2.2.4, for every simple object, L(b) ∈ A, there is an λ ∈ Λ in

which L(b) = jλ!∗Lλ(b) for a simple object Lλ(b) ∈ Aλ. Define the stratification

function ρ : B → Λ that assigns to each b ∈ B the λ ∈ Λ in which L(b) = jλ!∗Lλ(b).

Let Pλ(b) and Iλ(b) be the projective cover and injective envelope of the simple

object Lλ(b) in Aλ.
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Define the standard and costandard objects:

∆(b) := jλ! Pλ(b), ∇(b) := jλ∗ Iλ(b),

where λ = ρ(b). Note that since jλ! and jλ∗ are fully-faithful, these objects have

local endomorphism rings and are hence irreducible. Note also that if ρ(b) > ρ(b′)

then

HomA(∆(b),∆(b′)) = 0 = HomA(∇(b′),∇(b)) (2.17)

Indeed the only simple quotient of ∆(b) is L(b), and all simple subobjects, L(b′′),

of ∆(b′) satisfy ρ(b′) ≥ ρ(b′′). Likewise the only simple subobject of ∇(b) is L(b),

and all simple quotients, L(b′′), of ∇(b′) satisfy ρ(b′) ≥ ρ(b′′).

The following original result follows from the proofs of Theorem 2.3.9 and

Corollary 2.3.10.

Porism 2.4.1. Suppose A is an abelian category with a stratification by a finite

poset Λ, in which every strata category is a length category with finitely many

simple objects. Let ρ : B → Λ be the stratification function for A.

If A has enough projectives then for each λ ∈ Λ and b ∈ ρ−1(λ), the projective

indecomposable object P (b) ∈ A fits into a short exact sequence

0 → Q(b) → P (b) → ∆(b) → 0

in which Q(b) has a filtration by quotients of ∆(b′) satisfying ρ(b′) > ρ(b).

If A has enough injectives then for each λ ∈ Λ and b ∈ ρ−1(λ), the injective

indecomposable object I(b) ∈ A fits into a short exact sequence

0 → ∇(b) → I(b) → Q′(b) → 0

in which Q′(b) has a filtration by subobjects of ∇(b′) satisfying ρ(b′) > ρ(b).

Proof. We just prove the first statement by induction on the size of Λ. The base

case Λ = ∅ is vacuously true.

Consider the projective cover, P (b), of simple object L(b) in A. If ρ(b) is

maximal then P (b) ≃ ∆(b) and the result holds. Suppose ρ(b) is not maximal,
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and let µ ∈ Λ be a maximal element. Consider the recollement

A<µ A Aµ
i∗=i!

i∗

i!

j!=j∗

j!

j∗

Let P<µ(b) and ∆<µ(b) be the projective indecomposable and standard object in

A<µ corresponding to the simple object i∗L(b) ∈ A<µ. By induction there is a

short exact sequence

0 → Q<µ(b) → P<µ(b) → ∆<µ(b) → 0

in whichQ<µ(b) has a filtration by quotients of standard objects ∆<µ(b
′) satisfying

ρ(b′) > ρ(b). Since i∗ is exact we get the following short exact sequence in A:

0 → i∗Q<µ(b) → i∗P<µ(b) → ∆(b) → 0 (2.18)

and i∗Q<µ(b) has a filtration by quotients of standard objects ∆(b′) satisfying

µ > ρ(b′) > ρ(b). By applying the construction in step 1 of the proof of Theorem

2.3.9, P (b) fits into the short exact sequence in A:

0 → Qµ(b) → P (b) → i∗P<µ(b) → 0 (2.19)

and Qµ(b) is a quotient of a direct sum of standard objects of the form ∆(b′) in

which ρ(b′) = µ. Combining (2.18) and (2.19) gives the following diagram with

exact rows and columns:

0 0 0

0 Qµ(b) Qµ(b) 0 0

0 Q(b) P (b) ∆(b) 0

0 i∗Q<µ(b) i∗P<µ(b) ∆(b) 0

0 0 0

The result follows.
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Two natural questions to ask at this point are: Given an abelian category A
as in Porism 2.4.1,

• Under what conditions do projective indecomposables in A have a filtration

by standard objects?

• Under what conditions do injective indecomposables in A have a filtration

by costandard objects?

One sufficient condition for both of these statements to hold is the condition that

the stratification is 2-homological and all strata categories are semisimple (Lemma

2.5.3). In this case A is a highest weight category (see Theorem 2.5.2).

Categories in which projective and/or injective indecomposable objects have

filtrations by standard and/or costandard objects have been widely studied, begin-

ning with Cline-Parshall-Scott’s definition of highest weight category in [CPS88].

Categories whose projective indecomposables have filtrations by standard ob-

jects where originally studied by Dlab [Dla96] and by Cline, Parshall and Scott

[CPS96], where these are called standardly stratified categories. Categories in

which both projective objects have a filtration by standard objects and injective

objects have a filtration by costandard objects have been studied by various au-

thors (see e.g.[Fri07], [CZ19], [LW15]). These situations all fit into the framework

of ε-stratified categories (due to Brundan and Stroppel [BS18]). For the remainder

of this section we recall the definition of an ε-stratified category and conjecture

when a recollement of abelian categories is an ε-stratified category.

For b ∈ B and λ = ρ(b) ∈ Λ, define proper standard and proper costandard

objects

∆(b) := jλ! Lλ(b), ∇(b) := jλ∗Lλ(b).

For a sign function ε : Λ → {±}, define the ε-standard and ε-costandard objects

∆ε(b) :=

{
∆(b) if ε(ρ(b)) = +

∆(b) if ε(ρ(b)) = −
, ∇ε(b) :=

{
∇(b) if ε(ρ(b)) = +

∇(b) if ε(ρ(b)) = −
.

The following definition is due to Brundan and Stroppel [BS18].
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Definition 2.4.2. Let A be a finite abelian category enriched over an algebraically

closed field k. Suppose A has a stratification by a poset Λ and stratification

function ρ : B → Λ. Let ε : Λ → {+,−} be a function. Say that A is an

ε-stratified category if it satisfies the following equivalent conditions:

(ε-S1) For every b ∈ B, the projective indecomposable P (b) fits into an exact

sequence

0 → U(b) → P (b) → ∆ε(b) → 0

in which U(b) has a filtration by objects of the form ∆ε(b
′), where ρ(b′) ≥

ρ(b).

(ε-S2) For every b ∈ B, the injective indecomposable I(b) fits into an exact sequence

0 → ∇ε(b) → I(b) → U ′(b) → 0

in which U ′(b) has a filtration by objects of the form ∇ε(b
′), where ρ(b′) ≥

ρ(b).

The equivalence of statements (ε-S1) and (ε-S2) is shown in [ADL98, Theorem

2.2]. A proof of this fact can also be found in [BS18, Theorem 3.5].

This definition leads to the following question.

Open Question 2.4.3. Let A be an abelian category with a stratification by a finite

poset Λ. Find necessary and sufficient conditions for statements (ε-S1) and (ε-S2)

to hold.

To state our conjectured answer to this question we need the following defini-

tion. For a function ε : Λ → {±}, say that a stratification of an abelian category

A by a poset Λ is an ε-stratification if for all λ ∈ Λ the following hold:

(i) If ε(λ) = + then the functor jλ∗ : Aλ → A is exact.

(ii) If ε(λ) = − then the functor jλ! : Aλ → A is exact.

Brundan and Stroppel show [BS18, Theorem 3.5] that if A is an ε-stratified

category then the stratification of A by Λ is an ε-stratification. We conjecture

that the converse is true when the stratification is 2-homological.
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Conjecture 2.4.4. Let A be an abelian length category with finitely many simples,

enough projectives and injectives, and admits a 2-homological stratification by a

finite poset Λ. Then, for any ε : Λ → {±}, conditions (ε-S1) and (ε-S2) hold if

and only if the stratification of A is an ε-stratification.

One case in which Conjecture 2.4.4 is known to be true is if A has a 2-

homological stratification in which every strata category is semisimple. In this

case, A has an ε-stratification for every function ε : Λ → {±}. Moreover, A is

ε-stratified for every function ε : Λ → {±} (see Lemma 2.5.3 below).

2.5 Highest weight categories

In this section we give necessary and sufficient conditions for a finite abelian

category with a stratification by a poset Λ to be a highest weight category with

respect to the poset Λ. This result is not original. Indeed, a version of this result

(stated without the terminology of stratifications of abelian categories) is shown

in [Kra17, Theorem 3.4].

The following definition is due to [CPS88]1.

Definition 2.5.1 (Highest weight category). Let k be a field. Say that a k-linear
abelian category A is a highest weight category with respect to a finite poset Λ if

A is finite over k, and for every λ ∈ Λ there is a projective indecomposable, Pλ,

that fits into a short exact sequence in A:

0 → Uλ → Pλ → ∆λ → 0

in which:

(HW1) EndA(∆λ) is a division ring for all λ ∈ Λ.

(HW2) HomA(∆λ,∆µ) = 0 whenever λ > µ.

(HW3) Uλ has a filtration by standard objects ∆µ in which λ < µ.

1The definition of highest weight category used here is stronger that that used in [CPS88]. The

paper [CPS88] allows highest weight categories to be locally artinian, whereas we only consider

highest weight categories that are finite over a field k.

41



(HW4)
⊕

λ∈Λ Pλ is a projective generator of A.

Theorem 2.5.2. Let k be a field, and let A be a k-linear abelian category. The

following are equivalent:

(i) A is a highest weight category.

(ii) A has a homological stratification with respect to Λ in which every strata

category is equivalent to mod-Γλ for some finite dimensional division algebra

Γλ.

(iii) A has a 2-homological stratification with respect to Λ in which every strata

category is equivalent to mod-Γλ for some finite dimensional division algebra

Γλ.

We begin with a lemma.

Lemma 2.5.3. Suppose A is an Ext1-finite abelian category with a 2-homological

stratification with respect to a finite poset Λ, in which every strata category is

semisimple with finitely many simple objects. Let ρ : B → Λ be the stratification

function for A. Then for each b ∈ B, there is a projective object P (b) that fits

into a short exact sequence

0 → U(b) → P (b) → ∆(b) → 0

in which U(b) has a filtration by standard objects ∆(b′) in which ρ(b) < ρ(b′).

Proof. LetA be an Ext1-finite abelian category. SupposeA fits into a 2-homological

recollement as in (2.10), and AU is semisimple.

Suppose AZ has simple objects L1, . . . , Lm with projective covers P̄1, . . . , P̄m

in AZ . Suppose AU has simple objects L̃m+1, . . . , L̃m+n. Then if AU is semisimple

the simple objects Lm+k := j!∗L̃m+k ∈ AU have projective covers Pm+k := j!L̃m+k

in A. For Lt ∈ AZ , the projective cover, Pt, of Lt in A is constructed by the

following process (originally due to Krause [Kra17, Theorem 3.4]).

Fix 1 ≤ t ≤ m. Note that each endomorphism ring, EndA(Pm+k), is a division

ring since j! is fully-faithful. Hence we can define the universal extension

0 →
⊕
k

P⊕dk
m+k → Pt → P̄t → 0
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where dk := dimEndA(Pm+k) Ext
1
A(P̄t, Pm+k). Now, Pt has a filtration by standard

objects. We show that Pt is projective in steps.

Step 1. ExtℓA(Pt,−) vanishes on AZ for all 1 ≤ ℓ ≤ 2. Since the recollement

is 2-homological we have that ExtℓA(P̄t, X) = 0 = ExtℓA(
⊕

k P
⊕dk
m+k, X) for all

X ∈ AZ . The result follows.

Step 2. Ext1A(Pt,−) vanishes on the essential image of j!. SinceAU is semisim-

ple it suffices to show that Ext1A(Pt, Pm+l) = 0 for all 1 ≤ l ≤ n. This holds since

the first map in the following exact sequence is surjective:

HomA(
⊕
k

P⊕dk
m+k, Pm+l) → Ext1A(P̄t, Pm+l) → Ext1A(Pt, Pm+l) → 0

Step 3. Ext1A(Pt, X) = 0 for all X ∈ A. Consider the exact sequence

0 → K → j!j
!X → X → i∗i

∗X → 0

with K ∈ AZ . Split this sequence into two short exact sequences:

0 → K → j!j
!X → X ′ → 0

0 → X ′ → X → i∗i
∗X → 0

By the previous steps we have exact sequences

0 = Ext1A(Pt, j!j
!X) → Ext1A(Pt, X

′) → Ext2A(Pt,K) = 0

and

0 = Ext1A(Pt, X
′) → Ext1A(Pt, X) → Ext1A(Pt, i∗i

∗X) = 0

It follows that Pt is the projective..

By using an induction argument similar to that used in the proof of Porism

2.4.1, the result follows.

Proof of Theorem 2.5.2. We proceed in steps.

Step 1. (i) implies (ii). If A is a highest weight category with respect to Λ,

then a homological stratification of A by Λ is constructed as follows: For a closed

subcategory Λ′ ⊂ Λ define AΛ′ to be the Serre subcategory of A generated by the
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standard objects ∆λ in which λ ∈ Λ′. Then for any maximal µ ∈ Λ′ there is a

homological recollement of abelian categories

AΛ′\{µ} AΛ′ mod-EndA(∆λ)
i∗=i!

i∗

i!

j!=j∗

j!

j∗

in which j! = HomAΛ′ (∆µ,−) (see the proof of [Kra17, Theorem 3.4]).

Step 2. (ii) implies (iii). This is obvious.

Step 3. (iii) implies (i). Suppose A has a 2-homological stratification with

strata categories of the formAλ = mod-Γλ for a finite dimensional division ring Γλ.

Then A is finite (either by Corollary 2.3.11, or by Lemma 2.5.3 and Propositions

2.2.6 and 2.3.4). Let Lλ denote the unique simple object inAλ. Define ∆λ := jλ! Lλ

and let Pλ be the projective cover of jλ!∗Lλ in A. Statement (HW1) holds since

j! is fully-faithful, statement (HW2) is exactly equation (2.17), statement (HW3)

follows from Lemma 2.5.3, and statement (HW4) is obvious.

Example 2.5.4. The category of perverse sheaves over a space stratified by finitely

many affine spaces is always a highest weight category (see e.g. [BGS96, Theorem

3.3.1]). For example, for a Borel subgroup B of a complex reductive Lie group

G, the perverse sheaves on the flag variety G/B with respect to the stratification

into B-orbits is a highest weight category (this is the category of B-equivariant

perverse sheaves on G/B)2.

Example 2.5.5. Consider the closed subvariety N ⊂ gln(C) consisting of nilpotent

elements. The group G := GLn(C) acts on N by conjugation. For a partition

λ = (λ1, . . . , λm) of n, let Oλ be the G-orbit in N consisting of nilpotent matrices

whose Jordan form consists of Jordan blocks of sizes λ1, . . . , λm. The closure order

for the strata is given by the dominance order on partitions [Ger59] i.e. Oλ ⊂ Oµ

iff λ1+ · · ·+λk ≤ µ1+ · · ·µk for all k ≥ 1 (where partitions are extended by zeros

at the end if necessary). Mautner [Mau14, Theorem 1.1] shows that this category

is equivalent to the category of finite dimensional modules of the Schur algebra

2This category is equivalent to the principal block of the BBG-category O (see e.g. [BGS96,

Proposition 3.5.2])

44



Sk(n, n). A consequence of this equivalence is that the category PervG(N , k) is a
highest weight category with standard objects

∆(λ) := pH0(hλ!kOλ
[dimOλ])

and costandard objects

∇(λ) := pH0(hλ∗kOλ
[dimOλ]),

where hλ : Oλ ↪→ N is the inclusion (see e.g. Proposition 4.5.1).

More recent examples in which a stratified abelian category is shown to be a

highest weight category include [BM19, Theorem 6.8], [BR22, Theorem 7.2], and

[Gou22, Theorem 5.2].

2.6 Appendix: Recollements and t-structures

In this appendix we prove a result of Beilinson-Bernstein-Deligne [BBD82, Propo-

sition 1.4.16]. This statement says that given a recollement of triangulated cat-

egories with t-structure, one obtains a recollement of abelian categories on the

hearts of the t-structures by taking zero-th cohomology.

Recall that a t-structure on a triangulated category D is a pair (D≤0,D≥0) of

full subcategories (stable under isomorphism) satisfying the conditions:

(T1) If X ∈ D≤0, Y ∈ D≥0 then HomD(X,Y [−1]) = 0.

(T2) If X ∈ D≤0 then X[1] ∈ D≤0. If Y ∈ D≥0 then Y [−1] ∈ D≥0.

(T3) If X ∈ D then there is a unique triangle

τ≤0X → X → (τ≥0X)[−1] →

where τ≤0X ∈ D≤0 and τ≥0X ∈ D≥0.

The definition of t-structure is originally from [BBD82]. We refer the reader

to [HTT08, Chapter 8] for a good summary of the basic properties of t-structures.
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Remark 2.6.1. The uniqueness of the triangle in (T3) is redundant in this defini-

tion (see e.g. [HTT08, Proposition 8.1.5]).

Recall that the assignments X 7→ τ≤0X and X 7→ τ≥0X extend to functors

τ≤0 : D → D≤0 and τ≥0 : D → D≥0 in which:

(i) τ≤0 is right adjoint to the inclusion functor ι≤0 : D≤0 → D.

(ii) τ≥0 is left adjoint to the inclusion functor ι≥0 : D≥0 → D.

(see e.g. [HTT08, Proposition 8.1.4]) In fact the morphisms in (T3) are the unit

and counit of (a shifted version of) these adjoint functors. Write D♡ := D≤0∩D≥0

for the heart of the t-structure and define the n-th cohomology functor Hn :=

τ≤0τ≥0[n] : D → D♡.

Fix a recollement of triangulated categories

DZ D DU
i∗=i!

i∗

i!

j!=j∗

j!

j∗

(2.20)

with fixed t-structures on DZ and DU . Then there is a t-structure on D defined:

D≤0 = {X ∈ D | i∗X ∈ D≤0
Z , j∗X ∈ D≤0

U }

D≥0 = {X ∈ D | i!X ∈ D≥0
Z , j!X ∈ D≥0

U }.

We call this the BBD t-structure on D.

Say that a functor f : D1 → D2 is

• left t-exact if f(D≥0
1 ) ⊂ D≥0

2 .

• right t-exact if f(D≤0
1 ) ⊂ D≤0

2 .

• t-exact if it is both left and right t-exact.

The following proposition follows immediately from the definition of the BBD

t-structure.

Proposition 2.6.2. If a category D has the BBD t-structure then
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(i) i∗ = i! and j! = j∗ are t-exact.

(ii) i∗ and j! are right t-exact.

(iii) i! and j∗ are left t-exact.

Theorem 2.6.3 (Proposition 1.4.16 of [BBD82]). If D has the BBD t-structure

then the following is a recollement of abelian categories:

D♡
Z D♡ D♡

U

i∗=i!

H0(i∗)=τ≥0i∗

H0(i!)=τ≤0i!

j!=j∗

H0(j!)=τ≥0j!

H0(j∗)=τ≤0j∗

Proof. Axioms (R2), (R3), (R4) are obvious. The adjunction pair (H0(i∗), i∗)

follows immediately from the adjunction pair (τ≥0 ◦ i∗, i∗ ◦ ι≥0). The other ad-

junctions follow similarly.

Remark 2.6.4. As a partial converse to this theorem, Psaroudakis [Psa14, Theo-

rem 7.2] gives conditions for when recollements of abelian categories induce rec-

ollements of triangulated categories.
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Chapter 3

Polynomial representations and

Schur algebras

In this chapter we summarise the basic theory of the Schur algebra Sk(n, d) =

EndkSd
(
⊗d kn), for any field k, and define a new product of Schur algebra mod-

ules corresponding to Krause’s internal product of polynomial functors defined in

[Kra13].

The origin story of Schur algebras begins with the work of Schur [Sch1901]

relating polynomial representations of GLn(C) with representations of the sym-

metric group Sd. Green [Gre80] extended this work to the case that k is an

infinite field, taking an approach that emphasised the role of the Schur algebra.

In the next chapter we construct the Schur algebra via the Borel-Moore homol-

ogy of varieties related to the nilpotent cone of gln(C). This is a characteristic-free

version of Ginzburg’s construction [CG97, Proposition 4.2.5]. Using this geometric

version of the Schur algebra we give a new proof of Mautner’s [Mau14, Theorem

1.1] equivalence of categories between Sk(n, d)-mod and the category of perverse

sheaves on the nilpotent cone of gln(C).
The purpose of this chapter is two-fold. Our first aim is to set up the ba-

sic theory about Schur algebras that will be needed in our geometric applica-

tion. This occupies Section 3.1-3.5. Our second aim is to define a product

−⊠− : Sk(m, d)-mod × Sk(n, d)-mod → Sk(mn, d)-mod that corresponds, under
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Schur-Weyl duality, to the Kronecker product on kSd modules (and corresponds,

under the equivalence between the category of Schur algebra modules and strict

polynomial functors, to a version of Krause’s internal product defined in [Kra13]).

The fact that Krause’s product and the Kronecker product commute with

Schur-Weyl duality has been shown in [AR17]. The construction of our prod-

uct and it’s relation to Krause’s product occupies Sections 3.6 and Section 3.7

respectively, but depends on previous results introduced in Sections 3.1-3.5.

In Section 3.1 we recall the definition of Lusztig’s idempotented form of a com-

plex Lie algebra g, U̇kg (originally defined in [Lus93]). We recall Doty’s [Dot03,

Corollary 6.13] result that identifies generalized Schur algebras (in the sense of

[Don86, Section 3.2]) with quotients of U̇kg.

In Section 3.2 we define the Schur algebra Sk(n, d) as a quotient of U̇kgln and

recount basic facts about its representation theory. In particular we construct the

Schur-Weyl duality functor FSW : Sk(n, d)-mod → mod-kSd.

In Sections 3.3 and 3.4 we describe the contravariant duality functor

(−)◦ : Sk(n, d)-mod → Sk(n, d)-modop

and external product

−⊗− : Sk(n, d)-mod× Sk(n, e)-mod → Sk(n, d+ e)-mod

respectively.

In Section 3.5 we recall some facts about double cosets of the symmetric group

by Young subgroups.

In Section 3.6 we define the homogeneous product

−⊠− : Sk(m, d)-mod× Sk(n, d)-mod → Sk(mn, d)-mod

and show that the following diagram of functors commutes:

Sk(m, d)-mod× Sk(n, d)-mod Sk(mn, d)-mod

mod-kSd ×mod-kSd mod-kSd

−⊠−

FSW×FSW FSW

−⊗k−
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In Section 3.7 we relate the homogeneous product to Krause’s internal product of

strict polynomial functors.

We include an appendix (Section 3.8) that recalls a basis of the Schur algebra

(due to Schur [Sch1901]) and shows that this basis is equal to another basis of the

Schur algebra constructed in [Tot97] and used in [Kra13] and [AR17]. This result

is not new (see e.g. [Rei16, Appendix]).

In a second appendix (Section 3.9) we recount a diagrammatic approach to

studying the Schur algebra that is described in [W19] and builds on the work in

[CKM14].

Throughout this chapter, we write [n] := {1, . . . , n}. Write v1, . . . , vn for the

standard basis of the vector space kn.

3.1 Integral Lie algebra representations

In this chapter we regard the Schur algebra as a quotient of Lusztig’s idempotented

enveloping algebra U̇gln. This definition of the Schur algebra is due to Doty and

Giaquinto [DG02, Theorem 1.4] (we recall this definition of the Schur algebra in

Section 3.2).

In this section we motivate and recall the definition of U̇kg, for a complex

reductive Lie algebra g. We recall a result of Doty [Dot03, Corollary 6.13] that

says that any generalized Schur algebra (in the sense of [Don86, Section 3.2]) is a

quotient of an idempotented enveloping algebra.

This result leads to a presentation of generalized Schur algebras by genera-

tors and relations (Proposition 3.1.3). This presentation is a refinement of the

presentation of generalized Schur algebras given in [Dot03]. This presentation is

known but is unpublished (it was told to me by Stephen Doty, but is essentially

proven in [CG97, Corollary 4.3.2] using different terminology). We will refer to

this presentation in Chapter 4.

Let g be a complex reductive Lie algebra of rank n, with decomposition g =

s ⊕ a into semisimple and abelian parts. Fix a Cartan subalgebra h ⊂ s and for
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λ ∈ h∗ define

gλ := {x ∈ g | [h, x] = λ(h)x for all h ∈ h}.

Define the root system Φ = {λ ∈ h∗ | gλ ̸= 0} ⊂ h∗.

Let α1, . . . , αdim h be a choice of simple roots in Φ and let {ei, fi, hi}i∈[dim h] be

Chevalley generators of s with respect to this choice of simple roots i.e. choose

ei ∈ gαi , fi ∈ g−αi so that hi := [ei, fi] ∈ h satisfies αi(hi) = 2. Let (aij) be the

Cartan matrix of s i.e. aij = αi(hj).

The Lie algebra s has a presentation by generators {ei, fi, hi}i∈[dim h] and the

Chevalley-Serre relations (see e.g. [Ser87, Chapter IV, Appendix]):

[hi, hj ] = 0, [ei, fj ] = δijhi, (3.1)

[hi, ej ] = aijej , [hi, fj ] = −aijfj , (3.2)

(ad ei)
1−aijej = 0 = (ad fi)

1−aijfj (i ̸= j). (3.3)

Here ad(ei) refers to the adjoint action [ei,−] : g → g.

Define the Cartan subalgebra t = h⊕ a ⊂ g and let hdim h+1, . . . , hn be a basis

of a. Let

Λ := {λ ∈ t∗ | λ(hi) ∈ Z for all i = 1, . . . , n}

be the weight lattice of g. Let

Λ+ := {λ ∈ Λ | λ(hi) ≥ 0 for all i = 1, . . . ,dim h}

be the set of dominant weights. Define the dominance order on Λ: λ ≤ µ if µ− λ

is a positive root i.e. µ− λ ∈ Nα1 + · · ·Nαdim h.

The Weyl group, W , of g is the group of automorphisms t∗ → t∗ generated

by the reflections si : λ 7→ λ − λ(hi)αi for i ∈ [dim h] (here we think of αi as an

element of t∗ by setting αi(x) = 0 for all x ∈ a). The weight lattice Λ ⊂ t∗ is

invariant under W and every λ ∈ Λ is in the W -orbit of a unique λ+ ∈ Λ+. In

particular Λ =
⋃

λ∈Λ+ Wλ.

We restrict our attention to g-modules M with a weight space decomposition,

M =
⊕

λ∈ΛMλ, where

Mλ = {m ∈ M | x ·m = λ(x)m for all x ∈ t}
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is the λ-weight space of M . We call such modules integral g-modules. Integral

g-modules can be viewed as modules over a related algebra, U̇Cg, first studied by

Lusztig [Lus93, Part IV]. We recall the definition of this algebra now.

Definition 3.1.1 (Lusztig’s idempotented enveloping algebra U̇Cg). Let g = s ⊕ a

be a complex reductive Lie algebra of rank n. Let Λ be the integral weight lattice

of g and let (aij) be the Cartan matrix of s. The C-algebra U̇Cg is generated by

elements Ei, Fi for i ∈ [rank s], and 1λ for λ ∈ Λ. These satisfy the relations

1λ1µ = δλ,µ1λ, (3.4)

Ei1λ = 1λ+αi
Ei, Fi1λ = 1λ−αi

Fi, (3.5)

EiFi1λ = FiEi1λ + λ(hi)1λ, (3.6)

EiFj = FjEi (i ̸= j), (3.7)

ad(Ej)
1−aijEi = 0 = ad(Fj)

1−aijFi (i ̸= j). (3.8)

There is an obvious equivalence of categories between the category of integral

g-modules and the category of modules over U̇Cg. More precisely, each integral

g-module M corresponds to the U̇Cg-module M , in which 1λ acts by projection

onto the λ-weight space (and the action Ei, Fi on M is the same as the action of

the Chevalley generators ei, fi on M).

Define the Z-algebra, U̇Zg, to be the Z-subalgebra of U̇Cg generated by the

elements

E
(r)
i :=

Er
i

r!
, F

(r)
i :=

F r
i

r!

and all the idempotent generators 1λ. For a field k, let

U̇kg := k⊗Z U̇Zg.

Example 3.1.2 (U̇Cgln). Let g = gln and t ⊂ gln be the space of diagonal matrices.

Let εi ∈ t∗ be the dual of the matrix eii, and αi = εi − εi+1 ∈ t∗. The αi form a

complete set of simple roots. The weight lattice, Λ, of gln is the Z-span of the εi.

We identify elements of Λ by their coordinates in Zn with respect to this basis.

For example, we write αi = (0, . . . , 0, 1,−1, 0, . . . , 0) ∈ Zn, where the 1 is in the

i-th position.
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The algebra U̇Cgln is generated by elements Ei, Fi, for i ∈ [n− 1], and idem-

potents 1λ for λ ∈ Zn. These satisfy the relations

1λ1µ = δλ,µ1λ, (3.9)

Ei1λ = 1λ+αi
Ei, Fi1λ = 1λ−αi

Fi, (3.10)

EiFi1λ = FiEi1λ + (λi − λi+1)1λ, (3.11)

EiFj = FjEi (i ̸= j), (3.12)

EiEj = EjEi, FiFj = FjFi (|i− j| > 1), (3.13)

EiEjEi = E
(2)
i Ej + EjE

(2)
i (|i− j| = 1), (3.14)

FiFjFi = F
(2)
i Fj + FjF

(2)
i (|i− j| = 1). (3.15)

For the remainder of this section fix a reductive Lie algebra g = s ⊕ a with

set, Λ+, of dominant weights. Let π denote a finite closed-downwards subposet

of Λ+.

The category of finite dimensional U̇Cg-modules, U̇Cg-mod, is semisimple, and

the simple objects are (up to isomorphism) in bijection with the set of dominant

weights. More precisely, each λ ∈ Λ+, corresponds to the simple module, Lλ, with

highest weight λ.

Doty [Dot03, Corollary 6.13] shows that for a finite closed-downwards subposet

π ⊂ Λ+, the two-sided ideal ⟨1λ | λ ∈ Λ+ \ π⟩ ⊂ U̇Cg is the ideal of all elements

of U̇Cg that annihilate every simple module Lλ for λ /∈ π.

In particular the following categories are equivalent:

1. The category of modules M ∈ U̇Cg-mod whose simple composition factors

are of the form Lλ, for λ ∈ π.

2. The category of modules M ∈ U̇Cg-mod in which 1λM = 0 whenever λ ∈
Λ+ \ π.

3. The category of finite dimensional modules of the algebra

SC(π) := U̇Cg/⟨1λ | λ ∈ Λ+ \ π⟩.
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For a field k, define the algebra

Sk(π) := U̇kg/⟨1λ | λ ∈ Λ+ \ π⟩.

For any U̇g-module M , there is a linear isomorphism 1λM ≃ 1µM whenever the

weights λ and µ are in the same Weyl group orbit (see e.g. [Ser87, Chapter VII,

Section 4, Remarks]). In particular 1λM = 0 if and only if 1µM = 0 for every

µ ∈ Wλ. It follows that

Sk(π) = U̇kg/⟨1λ | λ /∈ Wπ⟩.

Two immediate properties of Sk(π) worth mentioning are the following:

(i) The algebra Sk(π) has an identity element 1 =
∑

λ∈Wπ 1λ.

(ii) The elements E
(r)
i and F

(r)
i of Sk(π) are nilpotent. Moreover these elements

are equal to 0 for large enough r. To see this, note for instance that

E
(r)
i =

∑
λ∈Λ(n,d)

E
(r)
i 1λ =

∑
λ∈Λ(n,d)

1λ+rαi
E

(r)
i

is equal to zero for large enough r (since π ⊂ Λ+ is finite).

Donkin [Don86, Section 3.2] defines the generalized Schur algebra S ′
C(π) as the

quotient of the universal enveloping algebra, U g, by the ideal of all elements that

annihilate every simple module, Lλ, in which λ /∈ π. This algebra is generated

by the Chevalley generators ei, fi, hi (for i ∈ [dim h]) of s, together with a basis,

hdim h+1, . . . , hn, of a. Doty [Dot03, Corollary 6.13] shows that the algebra map

S ′
C(π) → SC(π) defined by

ei 7→ Ei, fi 7→ Fi, hi 7→
∑

λ∈Wπ

λ(hi)1λ. (3.16)

is an isomorphism. In particular, for any field k, the category Sk(π)-mod is a

highest weight category with respect to the poset π (see e.g. [Dot03, Theorem

5.4]).

The following unpublished result was told to me by Stephen Doty. The proof

of this result follows closely the proof of a similar result of Ginzburg [CG97,

Corollary 4.3.2].
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Proposition 3.1.3 (Doty’s Presentation of Generalized Schur Algebras). The gen-

eralized Schur algebra SC(π) is the unital C-algebra generated by Ei, Fi for i ∈
[rank s], and 1λ for λ ∈ Λ, and satisfying relations (3.4)-(3.7) together with the

relations

1λ = 0 (λ /∈ Wπ) (3.17)∑
λ∈Wπ

1λ = 1 (3.18)

Proof. By definition, SC(π) is generated by the Ei, Fi, 1λ, and satisfies the rela-

tions (3.4)-(3.8) that define U̇Cg, together with the additional relations (3.17) and

(3.18). It remains to show that Relation (3.8) is redundant in this presentation.

For each j ∈ [rank s], there is a U sl2-action on S ′
C(π) defined by

e · x = ad(ej)x, f · x = ad(fj)x, h · x = ad(hj)x.

If i ̸= j, then f · ei = 0 and h · ei = aijei. In particular (and since aij < 0),

the submodule of S ′
C(π) generated by ei is the simple module with highest weight

−aij . In particular, e1−aij · ei = 0. By a similar argument, f1−aij · fi = 0. The

result follows.

3.2 Schur algebras and Schur-Weyl duality

In this section we recall the definition of the classical Schur algebra and recall the

statement of Schur-Weyl duality.

Let g = gln(C) (where n ∈ N) and let k be a field. Say that a U̇kg-module M

is polynomial of homogeneous degree d if M has a weight space decomposition

M =
⊕

λ∈Λ(n,d)

Mλ,

where

Λ(n, d) := {(λ1, . . . , λn) ∈ Nn |
∑
i

λi = d}

is the set of weak compositions of d of length n. Some examples include
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(1) The module E :=
⊗d kn. Indeed consider the right action of Sd on E given

by permuting tensor factors i.e.

v1 ⊗ · · · ⊗ vd · σ = vσ(1) ⊗ · · · ⊗ vσ(d).

For λ ∈ Λ(n, d) define vλ ∈ E by

vλ := v1 ⊗ · · · ⊗ v1︸ ︷︷ ︸
λ1 times

⊗ v2 ⊗ · · · ⊗ v2︸ ︷︷ ︸
λ2 times

⊗ · · · ⊗ vn ⊗ · · · ⊗ vn︸ ︷︷ ︸
λn times

Then Eλ = k[vλ ·Sn] and E =
⊕

λ∈λ(n,d)Eλ.

(2) The d-th divided power Γdkn. This is the submodule of E consisting of

Sn-invariants.

(3) The d-th symmetric power Sdkn. This is the space of Sn-coinvariants of E.

i.e. Sdkn is the largest quotient of E in which Sn acts trivially.

(4) The d-th exterior power Λdkn. This is the largest quotient of E in which

Sn acts via the sign representation.

Write Pk
n,d for the category of left finite dimensional polynomial representa-

tions of U̇kg of homogeneous degree d. The category Pk
n,d is equivalent to the

category of finite dimensional left modules for the Schur algebra:

Sk(n, d) := U̇kg/⟨1λ | λ /∈ Λ(n, d)⟩.

Note that Sk(n, d) is the generalized Schur algebra corresponding to the set,

Λ+(n, d) := {(λ1, . . . , λn) ∈ Λ(n, d) | λ1 ≥ . . . ≥ λn},

of dominant weights in Λ(n, d).

Remark 3.2.1. Schur algebras were first studied by Schur [Sch1901] in the case

k = C, and later by Green [Gre80] in the case that k is an infinite field. Neither

of these sources construct Schur algebras in the same way as they are defined

here (we recall the original definition in Section 3.8). The equivalence between

our definition of Sk(n, d) and the classical definition is due to Doty and Giaquinto
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[DG02, Theorem 1.4] (see also [DGS09]). If k is an infinite field then the polyno-

mial representations of U̇kg correspond to polynomial representations of GLn(k)
in the classical sense (see e.g. [Gre80, Section 3.2]).

The Schur algebras fit into a sequence of algebra embeddings

Sk(1, d) ↪→ Sk(2, d) ↪→ · · · ↪→ Sk(n, d) ↪→ Sk(n+ 1, d) ↪→ · · ·

in which each embedding maps 1λ 7→ 1(λ,0), E
(r)
i 7→ E

(r)
i , and F

(r)
i 7→ F

(r)
i . The

corresponding induction functors Pk
n,d → Pk

n+1,d are fully-faithful and equivalences

of categories when n ≥ d.

Define the category of degree d polynomial representations, Pk
d , as the colimit

of categories

Pk
d = Pk

∞,d := lim
n→∞

Pk
n,d.

Define the infinite Schur algebra

Sk(∞, d) := lim
n→∞

Sk(n, d).

The algebra Sk(∞, d) is generated by elements of the form E
(r)
i , F

(r)
i , for i ≥ 1,

together with idempotents 1λ, for λ in the set, Λ(∞, d), of infinite sequences of

non-negative integers with finitely many nonzero entries and whose entries sum

to d.

The category Pk
d is equivalent to the full subcategory of Sk(∞, d)-Mod con-

sisting of modules, M , in which the Sk(n, d)-module M(n) :=
⊕

λ∈Λ(n,d) 1λM is

finite dimensional for all n ∈ N. Here we think of Λ(n, d) ⊂ Λ(∞, d) by appending

zeroes to the end of sequences. Examples of such modules include
⊗d k∞, Γdk∞,

Sdk∞, Λdk∞.

The algebra Sk(n, d) is semisimple if and only if char k = 0 or chark > d (see

e.g. [Gre80, Corollary 2.6e]). The following is well-known and we include it here

without proof.

Theorem 3.2.2 (Schur-Weyl Duality). Let n ∈ N or n = ∞. The actions Sk(n, d) ↷⊗d kn ↶ kSd commute. Moreover the representation map

Φ : Sk(n, d) → EndkSd
(
⊗d kn)
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is an algebra isomorphism. The representation map

Ψ : kSd → EndSk(n,d)(
⊗d kn)

is surjective in general, and an isomorphism when n ≥ d.

For a proof that Φ is an isomorphism see [DG02, Theorem 1.4]. For a proof

that Ψ is an isomorphism when n ≥ d see [Bry09, Lemma 2.4].

Schur-Weyl duality has the following well-known corollary (see e.g. [Gre80,

Section 6.2] for a proof).

Corollary 3.2.3. Let n ≥ d. The functor

FSW := HomSk(n,d)(
⊗d kn,−) : Pk

n,d → Mod-kSd

is exact, full, and essentially surjective. Moreover if char k = 0 or char k > d,

then FSW is an equivalence of categories.

We call FSW the Schur-Weyl duality functor.

3.3 The contravariant duality functor (−)◦ : Pk
n,d → (Pk

n,d)
op

Consider the involutory algebra isomorphism (−)t : Sk(n, d) → Sk(n, d)
op that

interchanges E
(r)
i and F

(r)
i and maps the idempotent 1(λ1,...,λn) 7→ 1(λn,...,λ1). We

call this the transpose map.

There is an equivalence of categories (−)◦ : Sk(n, d)-mod → Sk(n, d)-modop

that maps a module M to the module, M◦, whose underlying vector space is the

linear dual M∗ = Homk(M, k) and with action

(x · f)(m) = f(xt ·m) for f ∈ M∗, x ∈ Sk(n, d), m ∈ M .

The module M◦ is called the contravariant dual of M .

The following proposition is useful for calculating contravariant duals.

Proposition 3.3.1. Let M,N be objects in Pk
n,d. There is a bijective correspondence

between morphisms f : M → N◦ and k-bilinear forms (−,−) : M × N → k
satisfying the property

(x ·m,n) = (m,xt · n) for all x ∈ Sk(n, d), m ∈ M , n ∈ N .
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Proof. Given a morphism f : M → N◦ the corresponding bilinear form is defined

(m,n) = f(m)(n).

Example 3.3.2. The Sk(n, d) module E =
⊗d kn is equal to it’s contravariant

dual. Indeed there is a non-degenerate bilinear form (−,−) : E ⊗ E → k defined

by

(vi1 ⊗ · · · ⊗ vid , vj1 ⊗ · · · ⊗ vjd) = δi1j1 · · · δidjd .

Likewise, (Γdkn)◦ ≃ Sdkn and (Λdkn)◦ ≃ Λdkn.
The following proposition follows immediately from the definitions.

Proposition 3.3.3. There is an equivalence of categories (Pk
n,d)

op ≃ mod-Sk(n, d)

defined by sending a left Sk(n, d)-module M to the right Sk(n, d)-module with the

same underlying vector space and with Sk(n, d)-action

m · x = xt ·m for x ∈ Sk(n, d),m ∈ M .

3.4 The external product −⊗− : Pk
n,d × Pk

n,e → Pk
n,d+e

It is well known that for any gln-modules M , N , the space M ⊗k N carries a

natural gln-module structure. In this section we construct the Schur algebra

analogue of this construction. We will then use this product to characterise the

projective and injective modules in Pk
n,d, and give an alternate description of the

Schur-Weyl duality functor.

First define the algebra map ∆d,e : Sk(n, d+ e) → Sk(n, d)⊗ Sk(n, e) by:

E
(r)
i 7→

r∑
k=0

E
(k)
i ⊗ E

(r−k)
i , F

(r)
i 7→

r∑
k=0

F
(k)
i ⊗ F

(r−k)
i ,

1λ 7→
∑

µ∈Λ(n,d)
ν∈Λ(n,e)
µ+ν=λ

1µ ⊗ 1ν .

We call ∆d,e the external comultiplication map due to the fact that the following
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diagram commutes:

Sk(n, d+ e+ f) Sk(n, d)⊗ Sk(n, e+ f)

Sk(n, d+ e)⊗ Sk(n, f) Sk(n, d)⊗ Sk(n, e)⊗ Sk(n, f)

∆d,e+f

Id⊗∆e,f∆d+e,f

∆d,e⊗Id

Remark 3.4.1. To see that ∆d,e is indeed an algebra map use the presentation

of U̇Cgln to check that ∆d,e : SC(n, d + e) → SC(n, d) ⊗ SC(n, e) is a C-algebra
map. This map sends SZ(n, d + e) to SZ(n, d) ⊗ SZ(n, e) and so the result holds

for general k.

Given an Sk(n, d)-module M and an Sk(n, e)-module N, the space M ⊗k N

carries a natural Sk(n, d + e)-module structure inherited from the external co-

multiplication map. That is, for x ∈ Sk(n, d + e) and m ⊗ n ∈ M ⊗ N , if

∆(x) =
∑

i xi,1 ⊗ xi,2 then

x · (m⊗ n) =
∑
i

xi,1 ·m⊗ xi,2 · n.

This procedure defines the external product −⊗− : Pk
n,d × Pk

n,e → Pk
n,d+e.

For λ ∈ Λ(n, d), define the Sk(n, d) modules

Γλkn := Γλ1kn ⊗ · · · ⊗ Γλnkn,

Sλkn := Sλ1kn ⊗ · · · ⊗ Sλnkn,

Λλkn := Λλ1kn ⊗ · · · ⊗ Λλnkn.

For example,
⊗d kn = Γ1,...,1kn = S1,...,1kn = Λ1,...,1kn.

The following result is well-known (see e.g. [AB88, p. 177]).

Proposition 3.4.2. There is an isomorphism of Sk(n, d)-modules

Sk(n, d)1λ → Γλkn

mapping 1λ to vλ := v⊗λ1
1 ⊗ v⊗λ2

2 ⊗ · · · ⊗ v⊗λn
n . In particular the projective objects

of Pk
n,d are isomorphic to direct sums of direct summands of modules of the form

Γλkn.
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A consequence of Proposition 3.4.2 is that for any λ ∈ Λ(n, d), and M ∈ Pk
n,d,

there is a natural isomorphism

HomPk
n,d

(Γλkn,M) ≃ 1λM

sending a morphism f : Γλkn → M to f(vλ). In particular, if n ≥ d, the Schur-

Weyl duality functor,

FSW := HomPk
n,d

(
⊗d kn,−) : Pk

n,d → mod-kSd,

sends an Sk(n, d)-module M to it’s (1, . . . , 1, 0, . . . 0)-weight space.

For objects M ∈ Pk
n,r and N ∈ Pk

n,s, there is an isomorphism M◦ ⊗ N◦ ≃
(M ⊗N)◦ coming from the obvious bilinear form (M◦ ⊗N◦)⊗ (M ⊗N) → k. In
particular (Γλkn)◦ ≃ Sλkn. The next proposition follows immediately.

Proposition 3.4.3. The injective objects of Pk
n,d are isomorphic to direct sums of

direct summands of modules of the form Sλkn.

Define the dominance order, ≤, on

Λ+(n, d) := {(λ1, . . . , λn) ∈ Λ(n, d) | λ1 ≥ . . . ≥ λn}

by

λ ≤ µ if λ1 + · · ·+ λr ≤ µ1 + · · ·+ µr for all r = 1, . . . , n.

The decomposition of Γλkn and Sλkn into indecomposable objects is described

by the following proposition. This result is known (see e.g. [Don93, Lemma 3.4]).

Proposition 3.4.4. For λ ∈ Λ+(n, d), let Pλ (respectively Iλ) be the indecomposable

projective cover (respectively injective envelope) of the simple Sk(n, d)-module, Ln
λ,

with highest weight λ. Then

Γλkn ≃ Pλ ⊕
⊕
µ>λ

P
⊕dλµ
µ ,

Sλkn ≃ Iλ ⊕
⊕
µ>λ

I
⊕dλµ
µ ,

where dλµ is the dimension of the λ-weight space in Ln
µ.
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Proof. Since Γλkn is projective, there is a decomposition

Γλkn =
⊕

µ∈Λ+(n,d)

P
mλµ
µ ,

for some numbers mλµ ∈ N. By Proposition 3.4.2, for partitions λ, µ of d, there

is a bijection

HomPk
n,d

(Γλkn, Ln
µ) ≃ 1λL

n
µ.

In particular, mλµ = dim1λL
n
µ. This proves the first isomorphism. The second

isomorphism holds by the dual argument.

For the remainder of this section we derive an alternative description of the

Schur-Weyl duality functor (Proposition 3.4.6) that will be needed in the discus-

sion of the homogeneous product of Schur algebra modules.

By Proposition 3.4.2, there are isomorphisms

HomPk
n,d

(Γλkn,M)∗ ≃ (1λM)∗

≃ 1λM
◦

≃ HomPk
n,d

(Γλkn,M◦)

≃ HomPk
n,d

(M,Sλkn)

(3.19)

for each λ ∈ Λ(n, d) and M ∈ Pk
n,d.

Remark 3.4.5. The isomorphism HomPk
n,d

(Γλkn,M)∗ ≃ HomPk
n,d

(M,Sλkn) is a

special case of Serre duality in Pk
n,d (see [MS08, Section 4.5] or [Kra13, Proposition

5.4] for a precise description of Serre duality in Pk
n,d).

The following proposition follows immediately from (3.19) in the case λ =

(1, . . . , 1).

Proposition 3.4.6. Let n ≥ d. The following diagram of functors commutes.

(Pk
n,d)

op Pk
n,d

kSd-mod ≃ (mod-kSd)
op mod-kSd

(−)◦

FSW FSW

(−)∗

Moreover, there is a natural isomorphism of functors

FSW ≃ HomPk
n,d

(−,
⊗d kn)∗ : Pk

n,d → mod-kSd.
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3.5 Double cosets of the symmetric group by parabolic sub-

groups

In this section we define some combinatorial tools that will be needed in our

discussion of the homogeneous product of Schur algebra modules.

Every sequence λ ∈ Λ(m, d) determines a set partition [d] = λ1 ∪ · · · ∪ λm in

which λi = {λ0+ · · ·+λi−1, . . . , λ0+ · · ·+λi}, where λ0 = 0. For each λ ∈ Λ(m, d)

define the corresponding parabolic subgroup of Sd by:

Sλ := Sλ1
× · · · ×Sλm

⊂ Sd.

These are alternatively known as Young subgroups of Sd in the literature.

Given a second sequence µ ∈ Λ(n, d), define Aλ
µ to be the set of m×n matrices,

(aij), with entries in N, with row sum λi =
∑

j aij and column sum µj =
∑

i aij .

For example,

A
(3,3)
(2,2,2) = {

(
2 1 0

0 1 2

)
,

(
2 0 1

0 2 1

)
,

(
1 2 0

1 0 2

)
,

(
1 1 1

1 1 1

)
,

(
1 0 2

1 2 0

)
,

(
0 2 1

2 0 1

)
,

(
0 1 2

2 1 0

)
}.

The following result is due to James and Kerber [JK81, Corollary 1.3.11].

Definition/Theorem 3.5.1. There is a bijection Θλ
µ : Sλ\Sd/Sµ → Aλ

µ sending

SλσSµ to the matrix aij = |λi ∩ σ(µj)|.

Proof. Consider the left action of Sd on Sλ\Sd ×Sd/Sµ defined:

σ · (Sλg, hSµ) = (Sλgσ
−1, σhSµ).

Note that the set ofSd-orbits, (Sλ\Sd×Sd/Sµ)/Sd, is in bijection withSλ\Sd/Sµ.

Specifically the pair (Sλg, hSµ) corresponds to the double coset SλghSµ.

Consider the map θ : Sλ\Sd × Sd/Sµ → Aλ
µ that sends (Sλg, hSµ) to the

matrix aij = |g−1(λi) ∩ h(µj)|. This map is clearly well-defined and θ(x) = θ(y)

if and only if x and y are in the same Sd-orbit. The result follows.
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Remark 3.5.2. A survey of results about the matrices in Aλ
µ can be found in

[DiG95] where these matrices are called rectangular arrays with fixed margins.

In statistics these matrices are alternatively called contingency tables with fixed

margins or fixed-margin matrices.

We often regard the matrixA ∈ Aλ
µ as a sequence (A11, . . . , A1n, A21, . . . , Amn).

In particular we define a corresponding set partition

[d] = A11 ∪ . . . ∪A1n ∪A21 ∪ . . . ∪Amn.

Note that for A ∈ Aλ
µ,

λi =
⋃
j

Aij and µj =
⋃
i

At
ji,

where At is the transpose of A.

Definition 3.5.3. Say that a permutation σ ∈ Sd twists A ∈ Aλ
µ if

σ(At
ji) = Aij .

For example, if A =

(
0 2

2 0

)
then

A11 = ∅, A12 = {1, 2}, A21 = {3, 4}, A22 = ∅,

and the permutation (13)(24) twists A.

3.6 Homogeneous product of Schur algebra modules

Recall that if M,N are right kSd-modules then M ⊗k N is also a right kSd-

module with diagonal action (m⊗ n) · σ = m · σ ⊗ n · σ. In this section we define

a product −⊗− : Pk
d × Pk

d → Pk
d (right exact in each variable) that makes the

following diagram commute:

Pk
d × Pk

d Pk
d

mod-kSd ×mod-kSd mod-kSd

−⊗−

FSW×FSW FSW

−⊗k−
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Our definition of−⊗− is original. To state it we need some preliminary definitions.

We identify the weight lattice of glmn with the set of m× n matrices with entries

in Z. The algebra Sk(mn, d) has generating idempotents, 1ν , indexed by the set,

Λ(m× n, d), of m× n matrices with entries in N, whose entries sum to d. Denote

the standard basis of kmn by

{vij | i ∈ [m], j ∈ [n]},

and for a matrix ν ∈ Λ(m× n, d) define

vν = v⊗ν11
11 ⊗ v⊗ν12

12 ⊗ · · · ⊗ v⊗ν1n
1n ⊗ v⊗ν21

21 ⊗ · · · ⊗ v⊗νmn
mn .

Consider the kSd-equivariant isomorphism

θ :
⊗d km ⊗k

⊗d kn →
⊗d kmn

defined

vi1 ⊗ · · · ⊗ vid ⊗ vj1 ⊗ · · · ⊗ vjd 7→ vi1j1 ⊗ · · · ⊗ vidjd .

Define an algebra embedding Θ : Sk(m, d) ⊗k Sk(n, d) ↪→ Sk(mn, d) by the com-

position:

EndkSd
(
⊗d km)⊗EndkSd

(
⊗d kn) ↪→ EndkSd

(
⊗d km⊗

⊗d kn) ∼−→ EndkSd
(
⊗d kmn).

Here the first map applies the ⊗-product to two morphisms, and the second

map is defined via the isomorphism θ. That is, if f ∈ EndkSd
(
⊗d km) and

g ∈ EndkSd
(
⊗d kn), then the endomorphism Θ(f ⊗ g) ∈ EndkSd

(
⊗d kmn) is

defined:

Θ(f ⊗ g)(vi1j1 ⊗ · · · ⊗ vidjd) = θ(f ⊗ g)θ−1(vi1j1 ⊗ · · · ⊗ vidjd)

= θ(f(vi1 ⊗ · · · ⊗ vid)⊗ g(vj1 ⊗ · · · ⊗ vjd)).

In particular, if ν ∈ Aλ
µ then for f ∈ EndkSd

(
⊗d km) and g ∈ EndkSd

(
⊗d kn):

Θ(f ⊗ g)(vν) = θ(f(vλ)⊗ g(vµ · σ)), (3.20)

where σ ∈ Sd twists ν (in the sense of Definition 3.5.3). A description of Θ in

terms of the generators of the Schur algebra is given in Proposition 3.6.4.
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From the embedding Θ : Sk(m, d) ⊗k Sk(n, d) ↪→ Sk(mn, d) we define the

homogeneous external product −⊠− : Pk
m,d × Pk

n,d → Pk
mn,d by:

M⊠N := Sk(mn, d)⊗Sk(m,d)⊗Sk(n,d) (M ⊗k N)

By passing to the colimit Pk
d ≃ limn→∞ Pk

n,d we obtain the product −⊗− : Pk
d ×

Pk
d → Pk

d .

Theorem 3.6.1. The following diagram commutes:

Pk
d × Pk

d Pk
d

mod-kSd ×mod-kSd mod-kSd

−⊗−

FSW×FSW FSW

−⊗k−

To show this, we begin with a lemma.

Lemma 3.6.2. There is an isomorphism of Sk(mn, d)-modules:

Γλkm⊠Γµkn ≃
⊕
ν∈Aλ

µ

Γνkmn.

Proof. The idempotent 1λ ∈ EndkSd
(
⊗d km) is the projection onto the λ-weight

space. By equation (3.20),

Θ(1λ ⊗ 1µ) =
∑
ν∈Aλ

µ

1ν .

Hence:

Sk(m, d)1λ⊠Sk(n, d)1µ ≃ Sk(mn, d)⊗Sk(m,d)⊗Sk(n,d) Sk(m, d)1λ ⊗ Sk(n, d)1µ

≃ Sk(mn, d)⊗Sk(m,d)⊗Sk(n,d) 1λ ⊗ 1µ

≃ Sk(mn, d) ·
∑
ν∈Aλ

µ

1ν

≃
⊕
ν∈Aλ

µ

Sk(mn, d)1ν .

The result follows.
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Lemma 3.6.3. The map θ :
⊗d km⊗

⊗d kn →
⊗d kmn restricts to an isomorphism

of kSd-modules:

k[vλ ·Sd]⊗k k[vµ ·Sd] ≃
⊕
ν∈Aλ

µ

k[vν ·Sd].

Proof. For g, h ∈ Sd, two vectors vλ⊗(vµ·g) and vλ⊗(vµ·h) in k[vλ·Sd]⊗kk[wµ·Sd]

are in the same Sd orbit if and only if Θλ
µ(g) = Θλ

µ(h). Moreover, for ν ∈ Aλ
µ, if

σν ∈ Sd twists ν then Θλ
µ(σν) = ν and so:

k[vλ ·Sd]⊗ k[vµ ·Sd] ≃
⊕
ν∈Aλ

µ

k[(vλ ⊗ (vµ · σν)) ·Sd].

The result follows by the equation

θ(vλ ⊗ (vµ · σν)) = vν .

Proof of Theorem 3.6.1. Any object, X ∈ Pk
d , can be expressed as the cokernel of

a map

P−1
X → P 0

X → X → 0

in which P−1
X , P 0

X are projective. As ⊗ is right exact in each variable, for objects

X,Y ∈ Pk
d ,

X⊗Y = cok(X⊗P−1
Y → X⊗P 0

Y )

and

X⊗P i
Y = cok(P−1

X ⊗P i
Y → P 0

X⊗P i
Y ).

Hence it suffices to show that the diagram

Proj(Pk
d )× Proj(Pk

d ) Proj(Pk
d )

mod-kSd ×mod-kSd mod-kSd

−⊗−

FSW×FSW FSW

−⊗k−

(3.21)

commutes, where Proj(Pk
d ) ↪→ Pk

d is the full subcategory of projective objects.

By Proposition 3.4.6, there are natural isomorphisms of right kSd-modules

FSW (Γλkm) ≃ (
⊗d km)∗λ ≃ k[vλ ·Sd]
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The commutativity of diagram (3.21) follows from Lemmas 3.6.2 and 3.6.3.

Indeed, commutativity on objects follows directly from these lemmas. To see that

the functors agree on morphisms, observe that under the isomorphism

HomPk
n,d

(Γλkn,Γµkn) ≃ 1λSk(n, d)1µ,

the product map

−⊠− : Hom(Γλkm,Γλ′
km)⊗Hom(Γµkn,Γµ′

kn) → Hom(
⊕
ν∈Aλ

µ

Γνkmn,
⊕

ν′∈Aλ′
µ′

Γν′kmn)

corresponds to the map

Θ : 1λSk(m, d)1λ′ ⊗ 1µSk(n, d)1µ′ →
∑
ν∈Aλ

µ

1ν · Sk(mn, d) ·
∑

ν′∈Aλ′
µ′

1ν′ .

By definition,

Θ ≃ θ ◦ (−⊗k −) ◦ θ−1 : EndkSd
(
⊗d km)⊗ EndkSd

(
⊗d kn) → EndkSd

(
⊗d kmn).

The result follows from Lemma 3.6.3.

For the remainder of this section we define the map Θ in terms of the generators

of the Schur algebras. For this we need to introduce some convenient notation.

For i ∈ [m], j ∈ [n], k ∈ [m− 1], l ∈ [n− 1] define the m× n matrices

αil := eil − ei,l+1, αkn := ekn − ek+1,1,

α̌kj := ekj − ek+1,j , α̌ml := eml − e1,l+1.

For example, if m = n = 2 then

α11 =

(
1 −1

0 0

)
, α12 =

(
0 1

−1 0

)
, α21 =

(
0 0

1 −1

)
,

α̌11 =

(
1 0

−1 0

)
, α̌21 =

(
0 −1

1 0

)
, α̌12 =

(
0 1

0 −1

)
.
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The sets {αij} and {α̌ij} are two different sets of simple roots of glmn and so

correspond to two different sets of Chevalley generators of glmn. Thus the Schur

algebra Sk(mn, d) is generated by idempotents 1λ for λ ∈ Λ(m× n, d), and either

one of the following sets

1. Elements E
(r)
ij and F

(r)
ij satisfying e.g.

E
(r)
ij 1λ = 1λ+rαij

E
(r)
ij and F

(r)
ij 1λ = 1λ−rαij

F
(r)
ij .

2. Elements Ě
(r)
ij and F̌

(r)
ij satisfying e.g.

Ě
(r)
ij 1λ = 1λ+rα̌ij

Ě
(r)
ij and F̌

(r)
ij 1λ = 1λ−rα̌ij

F̌
(r)
ij .

For λ ∈ Λ(m, d) and µ ∈ Λ(n, d) define sets

row(λ) := {ν ∈ Λ(m× n, d) | λi =
n∑

j=1

νij for all i ∈ [m]},

col(µ) := {ν ∈ Λ(m× n, d) | µj =

m∑
i=1

νij for all j ∈ [n]}.

For a set X and r ∈ N define the set of multisubsets of X of size r by((
X

r

))
:=

{
f : X → N |

∑
x∈X

f(x) = r

}
.

For any K ∈
((

[m]
r

))
and K ′ ∈

((
[n]
r

))
define the following elements of Sk(mn, d):

E
(K)
j := E

(K(1))
1j · · ·E(K(m))

mj , Ě
(K′)
i := Ě

(K′(1))
i1 · · · Ě(K′(n))

in

where i ∈ [m] and j ∈ [n]. Define F
(K)
j and F̌

(K′)
i similarly.

The following result is new.

Proposition 3.6.4. The map Θ : Sk(m, d) ⊗k SZ(n, d) ↪→ Sk(mn, d) is defined on

generators by

1λ ⊗ 1 7→
∑

ν∈row(λ)

1ν , 1⊗ 1µ 7→
∑

ν∈col(µ)

1ν , (3.22)

E
(r)
i ⊗ 1 7→

∑
K∈

((
[n]
r

)) Ě(K)
i , 1⊗ E

(r)
j 7→

∑
K∈

((
[m]
r

))E(K)
j , (3.23)

F
(r)
i ⊗ 1 7→

∑
K∈

((
[n]
r

)) F̌ (K)
i , 1⊗ F

(r)
j 7→

∑
K∈

((
[m]
r

))F (K)
j . (3.24)
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Proof. Equations (3.22) follow from (3.20). To complete this proof we just show

the second equation of (3.23). The other equations follow similarly.

Given a subset R ⊂ [d], an integer j ∈ [n], and vector v = vj1 ⊗ · · · ⊗ vjd ∈⊗d kn, we define cj,R · v ∈
⊗d kn to be the vector obtained from v by replacing,

for each x ∈ R, the tensor factor vjx with vj . For example

c1,{2,3} · v1 ⊗ v2 ⊗ v2 = v1 ⊗ v1 ⊗ v1.

For a subset R ⊂ [d], a pair (i, j) ∈ [m]× [n] and a pure tensor v = vi1j1 ⊗ · · · ⊗
vidjd ∈

⊗d kmn, we define cij,R · v likewise. Moreover we define c∗j,R · v to be the

vector obtained from v by replacing, for each x ∈ R, the tensor factor vixjx with

vixj . Define ci∗,R · v similarly.

For a pure tensor v = vj1 ⊗ · · · ⊗ vjd ∈
⊗d kn, and j ∈ [n], let

v̄j := {x ∈ [d] | jx = j}.

For a pure tensor v ∈
⊗d kmn and pair (i, j) ∈ [m] × [n] we define v̄ij likewise.

Moreover define

v̄∗j := {x ∈ [d] | jx = j} and v̄i∗ := {x ∈ [d] | ix = i}.

For r ∈ N, the endomorphism E
(r)
j ∈ EndkSd

(
⊗d kn) is defined on a pure

tensor v by:

E
(r)
j (v) =

∑
R∈(v̄j+1

r )

cj,R · v,

where
(
v̄j+1
r

)
is the set of subsets of v̄j+1 of size r. That is, E

(r)
j (v) sums over all

the ways to replace r tensor factors of the form vj+1 with vj . Likewise if j ̸= n

then:

E
(r)
ij (v) =

∑
R∈(v̄i,j+1

r )

cij,R · v and E
(r)
in (v) =

∑
R∈(v̄i+1,1

r )

cij,R · v.

For v = vi1j1 ⊗ · · · ⊗ vidjd we have:

Θ(1⊗ E
(r)
j )(v) = θ(vi1 ⊗ · · · ⊗ vid ⊗ E

(r)
j (vj1 ⊗ · · · ⊗ vjd))

=
∑

R∈(v̄(∗,j+1)
r )

c∗j,R · v
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That is, Θ(1 ⊗ E
(r)
j )(v) sums over all the ways to replace r tensor factors of

the form vi,j+1 (for some i ∈ [m]) with vij . Compare this with E
(K)
j (v), where

K ∈
((

[m]
r

))
: This vector sums over all the ways to replace, for each i ∈ [m], K(i)

tensor factors of the form vi,j+1 with vij . It follows that

Θ(1⊗ E
(r)
j ) =

∑
K∈

((
[m]
r

))E(K)
j .

Remark 3.6.5. Consider the affine Grassmannian

GrGLn := GLn(C((t)))/GLn(C[[t]]),

where C((t)) is the field of formal Laurent series and C[[t]] is the ring of formal power

series (with coefficients in C). Consider the left multiplication action of GLn(C[[t]])
on GrGLn . For λ ∈ Zn in which λ1 ≥ · · · ≥ λn, let Grλ be the GLn(C[[t]])-orbit of
the point 

tλ1

tλ2

. . .

tλn

GLn(C[[t]]) ∈ GrGLn .

The affine Grassmannian has a stratification by GLn(C[[t]])-orbits, with the closure

order equal to the dominance order. In particular, consider the closed subspace

Grn,d := Gr(d,0,...,0) =
⋃

λ∈Λ+(n,d)

Gλ ⊂ GrGLn .

By Mirković-Vilonen’s geometric Satake correspondence [MV07, Theorem 14.1],

there is an equivalence of categories between Pk
n,d and the category PGLn(C[[t]])(Grn,d,k)

of GLn(C[[t]])-equivariant perverse sheaves on Grn,d. A natural question to ask is:

Is there a geometric definition of the product

−⊠− : PGLm(C[[t]])(Grm,d, k)× PGLn(C[[t]])(Grn,d, k) → PGLm+n(C[[t]])(Grm+n,d,k)

that corresponds to the homogeneous external product under the geometric Satake

correspondence.
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3.7 Strict polynomial functors

There is an equivalence of categories between Pk
d and the category of strict poly-

nomial functors of degree d [FS97, Theorem 3.2]. In this section we recall the

definition of such functors and show that, under this equivalence, the homoge-

neous product of Schur algebra modules corresponds to Krause’s product of strict

polynomial functors defined in [Kra13].

Remark 3.7.1. Strict polynomial functors were defined by Friedlander and Suslin

[FS97] in order to show that the cohomology of a finite group scheme over a

field k is a finitely generated k-algebra. An excellent survey of this and related

topics is given in [Tou14]. We use the definition and notation for strict polynomial

functor given in [Kra13]. This is easily shown to be equivalent to the definition

of Friedlander-Suslin.

Let Γk
d be the category whose objects are k-vector spaces and with morphisms:

HomΓk
d
(V,W ) := ΓdHomk(V,W ) ∼= Homk(V

⊗d,W⊗d)Sd

∼= HomkSd
(V ⊗d,W⊗d),

whereSd acts to the right of Homk(V
⊗d,W⊗d) via the action (fσ)(v) = f(vσ−1)σ.

Define the category, RepΓk
d, of strict polynomial functors of degree d to be the

category of k-linear functors from Γk
d to mod-k.

Remark 3.7.2. Note that Homk(Γ
dV,W ) = (ΓdV )∗⊗W = SdV ∗⊗W is the space

of regular maps from V to W . So polynomial functors are equivalent to functors

X : mod-k → mod-k in which for every pair of objects V,W ∈ mod-k, the map

X : Homk(V,W ) → Homk(X(V ), X(W )) is a polynomial map of degree d. This

is the original definition of polynomial functor in [FS97].

Important examples of strict polynomial functors include the divided power

functor Γd(−), the symmetric power functor Sd(−), the exterior power functor

Λd(−), and the tensor power functor
⊗d(−). For V ∈ mod-k, we denote the

corresponding representable functor in RepΓk
d by Γd,V i.e.

Γd,V (W ) = ΓdHomk(V,W ).
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There is an equivalence of categories (−)◦ : (RepΓk
d)

op → RepΓk
d defined on

objects by X◦(V ) = X(V ∗)∗, where (−)∗ refers to the linear dual. For example

(Γd)◦ = Sd and (Λd)◦ = (Λd)◦. The functor (Γd,V )◦ is isomorphic to the functor

Sd,V ∈ RepΓk
d defined on objects by

Sd,V (W ) = Sd(V ⊗W ).

Define the external product functors

−⊗− : RepΓk
d × RepΓk

e → RepΓk
d+e

by (X ⊗ Y )(V ) = X(V ) ⊗k Y (V ). Given λ ∈ Λ(n, d), define the degree-d strict

polynomial functors Γλ := Γλ1 ⊗ · · · ⊗ Γλn , Sλ := Sλ1 ⊗ · · · ⊗ Sλn , and Λλ :=

Λλ1 ⊗ · · · ⊗ Λλn . For example,
⊗d = Γ(1,...,1) = S(1,...,1) = Λ(1,...,1).

By the Yoneda lemma, the Schur algebra Sk(n, d) = Γd Endk(kn) is isomorphic

to the algebra EndRepΓk
d
(Γd,kn)op. Hence, for any object X ∈ RepΓk

d there is a

right action of Sk(n, d)
op on X(kn) ≃ HomPd

(Γd,kn , X) given by precomposition.

For n ≥ d we have equivalences of categories

evalkn(−) := HomRepΓk
d
(Γd,kn ,−) : RepΓk

d → mod-Sk(n, d)
op ≃ Pk

n,d (3.25)

[FS97, Lemma 3.4] (this is also proved using Krause’s notation in [Kra13, Theorem

2.10]). It follows that that there is an equivalence RepΓk
d ≃ Pk

d . This equivalence

commutes with the external products labelled ⊗ and the contravariant autoequiv-

alences labelled (−)◦.

For the remainder of this section we define Krauses internal product −⊗− :

RepΓk
d × RepΓk

d → RepΓk
d, and relate this product to the homogeneous product

of Schur algebra modules under the equivalence RepΓk
d ≃ Pk

d .

To define Krause’s product, first note that the usual tensor product on vector

spaces defines an exact tensor product − ⊗k − : Γk
d × Γk

d → Γk
d. By the Yoneda

embedding (Γk
d)

op ↪→ RepΓk
d : V 7→ Γd,V we can define a tensor product on

representable functors in RepΓk
d by:

Γd,V ⊗Γd,W := Γd,V⊗W .
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Krause’s internal product extends this product on representable functors to a

right exact functor on the whole of RepΓk
d. To define this extension, first note

that every object in RepΓk
d is a colimit of representable functors. Indeed, let CX be

the category whose objects are natural transformations Γd,V → X for V ∈ mod-k,
and with morphisms from an object xv : Γd,V → X to an object xw : Γd,W → X

being the natural transformations ϕ : Γd,V → Γd,W in which xw ◦ ϕ = xv. Then

X is the colimit of the diagram functor FX : CX → RepΓk
d that sends an object

Γd,V → X to it’s domain Γd,V . Extend the definition of ⊗ to non-representable

functors in RepΓk
d by defining

X⊗Γd,W := colim(FX(−)⊗Γd,W ),

X⊗Y := colim(X⊗FY (−)).

for all X,Y ∈ RepΓk
d.

Remark 3.7.3. Krause’s internal product is an example of a construction on cate-

gories of functors known as Day convolution. This construction is first studied in

[Day70].

Remark 3.7.4. There is a left exact version of Krause’s product −⊗!− : RepΓk
d ×

RepΓk
d → RepΓk

d defined

X⊗!Y := (X◦⊗Y ◦)◦.

The product ⊗! can also be defined by using the fact that every object in RepΓk
d

is a limit of the dual representable functors Sd,V . Indeed, by proceeding as in

the definition of ⊗ but with colimits replaced by limits, we can directly define

−⊗!− : RepΓk
d×RepΓk

d → RepΓk
d as the product that is left exact in each variable

and satisfies Sd,V ⊗!Sd,W = Sd,V⊗W . Krause [Kra13] also defines a internal Hom

functor Hom(−,−) : (RepΓk
d)

op×RepΓk
d → RepΓk

d whose definition is equivalent

to Hom(X,Y ) = X◦⊗!Y .
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Theorem 3.7.5. The following diagram commutes:

RepΓk
d × RepΓk

d RepΓk
d

Pk
d × Pk

d Pk
d

−⊗−

evalkn × evalkn evalkn

−⊗−

Proof. As in the proof of Theorem 3.6.1 it is enough to check that this diagram

commutes on projective objects. The projective objects of RepΓk
d are direct sum-

mands of direct sums of the objects Γλ, for λ ∈ Λ(n, d). By [AR17, Corollary

4.5],

Γλ⊗Γµ =
⊕
ν∈Aλ

µ

Γν .

The result follows.

3.8 Appendix: Standard basis of the Schur algebra

In this section we recall the original definition of the Schur algebra. This defini-

tion gives rise to a natural characteristic-free basis of the Schur algebra that was

identified by Schur in [Sch1901]. We recall the definition of this basis and show

that this basis is equal to the basis of the Schur algebra constructed by Totaro

[Tot97, pg. 8], and used in [Kra13] and [AR17]. This result is not new (see e.g.

[Rei16, Appendix]).

Consider the polynomial algebra k[xij ] with n2 variables (i, j ∈ [n]). We re-

gard k[xij ] as a bialgebra with comultiplication defined on generators by xij 7→∑n
ℓ=1 xiℓ⊗xℓj and counit xij 7→ δij . Let Ak(n, d) be the subcoalgebra of k[xij ] con-

sisting of polynomials of degree d. Then Ak(n, d)
∗ has a natural algebra structure.

Schur [Sch1901] constructs an algebra isomorphism

χ : Ak(n, d)
∗ → EndkSd

(
⊗d kn)

by the following process. For a function i : [d] → [n], let vi = vi(1) ⊗ · · · ⊗ vi(d) ∈⊗d kn. Then for any ξ ∈ Ak(n, d)
∗,

χ(ξ)(vj) =
∑

i∈[n][d]
ξ(xi,j)vi,
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where [n][d] is the set of functions [d] → [n], and

xi,j = xi(1)j(1) · · ·xi(d)j(d) ∈ Ak(n, d).

A proof of this isomorphism can be found in [Gre80, Section 2.6] and this proof

works for any commutative ring k.
There is a right action of Sd on [n][d] defined (i · σ)(a) = i(σ(a)). Likewise

there is a rightSd-action on [n][d]×[n][d] given by the diagonal action. The algebra

Ak(n, d)
∗ has a basis consisting of the elements ξi,j that are dual to xi,j . Clearly

ξi,j = ξk,l if and only if (k, l) = (iσ, jσ) for some σ ∈ Sd. Note in particular that

χ(ξi,j)(vl) is the sum over all vectors vk in which (k, l) is in the Sd-orbit of (i, j).

For λ ∈ Λ(n, d), let iλ ∈ [n][d] be the function sending any element in λi to

i i.e. so that viλ = vλ. Then every basis element is of the form ξiµσ,iλ for some

σ ∈ Sd, and ξiµσ1,iλ = ξiµσ2,iλ if and only if Sµσ1Sλ = Sµσ2Sλ.

Proposition 3.8.1. The Sd-equivariant endomorphism χ(ξiµσ,iλ) ∈ EndkSd
(
⊗d kn)

is defined

χ(ξiµσ,iλ)(vν) =


∑

i∈iµσSλ
vi if ν = λ,

0 otherwise,

for all ν ∈ Λ(n, d).

Proof. The value of ξiµσ,iλ(xi,iν ) is nonzero only if ν = λ. Moreover ξiµσ,iλ(xi,iλ) =

1 if and only if there is an element w ∈ Sd in which (i, iλ) = (iµσw, iλw), otherwise

ξiµσ,iλ(xi,iλ) = 0. As Sλ is the stabilizer of iλ, it follows that ξiµσ,iλ(xi,iλ) = 1 if

and only if i is in the Sλ-orbit of iµσ. The result follows.

The following equation holds by an argument similar to the proof of Proposi-

tion 3.8.1:

χ(ξi,j)(vj) =
∑

k∈i·stab(j)

vk. (3.26)

Example 3.8.2. We calculate explicitly the values of χ(ξiµσ,iλ)(vλ) in the case

λ = µ = (2, 2). We denote a function i ∈ [n][d] by the sequence (i(1), . . . , i(d)),

and write vi1i2···id for the vector vi1 ⊗ · · · ⊗ vid . Then,

χ(ξ(1,1,2,2),(1,1,2,2))(v1,1,2,2) = v1,1,2,2,
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χ(ξ(2,2,1,1),(1,1,2,2))(v1,1,2,2) = v2,2,1,1,

χ(ξ(1,2,1,2),(1,1,2,2))(v1,1,2,2) = v1,2,1,2 + v1,2,2,1 + v2,1,1,2 + v2,1,2,1.

Write ξσµ,λ for the basis element in Sk(n, d) corresponding to ξiµσ,iλ ∈ Ak(n, d)
∗.

We call {ξσµ,λ | λ, µ ∈ Λ(n, d), σ ∈ Sd}, the standard basis of Sk(n, d). The

generators of Sk(n, d) are examples of standard basis elements. More precisely,

1λ = ξeλ,λ, E
(r)
i 1λ = ξeλ+rαi,λ

, F
(r)
i 1λ = ξeλ−rαi,λ

,

where e denotes the identity element in Sd.

By Proposition 3.8.1, it is clear that ξσ2
ν,ηξ

σ1
µ,λ = 0 whenever η ̸= µ. The

following proposition describes the other structure constants for the Schur algebra.

Proposition 3.8.3. In Sk(n, d):

ξσ2
ν,µξ

σ1
µ,λ =

∑
σ

cσσ2,σ1,ν,µ,λξ
σ
ν,λ,

where the sum ranges over representatives of Sν\Sd/Sλ, and cσσ2,σ1,ν,µ,λ
is the

number of i ∈ iµσ1Sλ in which (iνσ, i) is in the Sd-orbit of (iνσ2, iµ).

Proof. In this proof we will treat the elements ξσµ,λ as endomorphisms of
⊗d kn.

The coefficient cσσ2,σ1,ν,µ,λ
is equal to the number of times in which viνσ appears

as a summand in

ξσ2
ν,µξ

σ1
µ,λ(vλ) =

∑
i∈iµσ1Sλ

ξσ2
ν,µ(vi).

The vector viνσ appears as a summand of ξσ2
ν,µ(vi) if and only if (iνσ, i) is in the

Sd-orbit of (iνσ2, iµ). The result follows.

Remark 3.8.4. Schur [Sch1901, pg. 40] identifies a multiplication rule for standard

basis elements, and this rule is described by Green in [Gre80, pg. 13]. It is not

hard the equate their multiplication rule with ours. A graph theoretic approach

to defining these coefficients is given in [Mén01].

By Proposition 3.4.2,

1λSk(n, d)1µ ≃ (Γµkn)λ ≃ HomPk
n,d

(Γλkn,Γµkn)
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and so there is an algebra isomorphism

Sk(n, d)
op ≃

⊕
λ,µ∈Λ(n,d)

HomPk
n,d

(Γλkn,Γµkn),

where the multiplication on the right is given by composition where this is defined,

and evaluates to zero if the composition is not defined.

For the remainder of this section we recall Totaro’s basis of HomPk
n,d

(Γλkn,Γµkn)
and show that this basis corresponds to the standard basis of the Schur algebra

under the above isomorphism.

Given two weak compositions, λ, µ of d (of any length), say that λ ⪯ µ if

there is an inclusion of the parabolic subgroups Sλ ⊂ Sµ ⊂ Sd. We call this the

parabolic ordering on weak compositions of d.

Note that Γλkn is the space of Sλ-invariants of
⊗d kn. Hence if λ ⪯ µ then

Γµkn is a submodule of Γλkn. We denote the inclusion morphism by ∆ : Γµkn →
Γλkn. Additionally define the map ∇ : Γλkn → Γµkn by

v 7→
∑

g∈Sλ\Sµ

v · g

As a special case of these maps define:

∆r,s : Γ
r+skn → Γr,skn; v 7→ v

∇r,s : Γ
r,skn → Γr+skn; x⊗ y 7→

∑
g∈Sr,s\Sr+s

(x⊗ y) · g

Define the isomorphism:

τ : Γr,skn → Γs,rkn; v ⊗ w 7→ w ⊗ v

If λ is in the Sn orbit of µ, let τ : Γλkn → Γµkn be the unique isomorphism

built from the maps of the form τr,s by composition and tensoring with identity

morphisms.

For A ∈ Aλ
µ define the morphism ϕA : Γλkn → Γµkn as the composition

Γλkn =
⊗

j Γ
λjkn

⊗
j(
⊗

i Γ
aijkn)

⊗
i(
⊗

j Γ
aijkn)

⊗
i Γ

µikn = Γµkn
⊗j∆ τ ⊗i∇
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Recall from Theorem 3.5.1 that there is a bijection Θλ
µ : Sλ\Sd/Sµ → Aλ

µ

sending SλσSµ to the matrix aij = |λi ∩ σ(µj)|. For σ ∈ Sd we write Θλ
µ(σ)

for Θλ
µ(SλσSµ). The morphisms ϕA : Γλkn → Γµkn have the following explicit

description.

Proposition 3.8.5. If σ ∈ Sd and A = Θλ
µ(σ) then,

ϕA(vλ) =
∑

i∈iλσSµ

vi.

Proof. Applying the map ⊗j∆ : Γλkn →
⊗

j(
⊗

i Γ
aijkn) to vλ gives the vector

vλ ∈
⊗

j(
⊗

i Γ
aijkn). The map τ :

⊗
j(
⊗

i Γ
aijkn) →

⊗
i(
⊗

j Γ
aijkn) permutes

tensor factors. In particular, if σA ∈ Sd twists A, then τ(vλ) = vλσA. Applying

the map ⊗i∇ :
⊗

i(
⊗

j Γ
aijkn) → Γµkn to vλσA gives

∑
i∈iλσASµ

vi. The result

follows since ∑
i∈iλσASµ

vi =
∑

i∈iλσSµ

vi

whenever SλσASµ = SλσSµ.

The set {ϕA(vλ) | A ∈ Aλ
µ} is a basis of (Γµkn)λ, and so {ϕA | A ∈ Aλ

µ} is a

basis of HomPk
n,d

(Γλkn,Γµkn).

Theorem 3.8.6. There is an algebra isomorphism

Sk(n, d)
op ≃

⊕
λ,µ∈Λ(n,d)

HomPk
n,d

(Γλkn,Γµkn),

sending ξσµ,λ to the morphism ϕA : Γµkn → Γλkn in which Θµ
λ(σ) = A.

Proof. Let σ1, σ2 ∈ Sd be such that Θµ
λ(σ1) = A1 and Θν

µ(σ2) = A2. By Proposi-

tion 3.8.5, and using a proof similar to Proposition 3.8.3,

ϕA1 ◦ ϕA2 =
∑
σ

cσσ2,σ1,ν,µ,λϕΘν
λ(σ)

,

where the sum ranges over representatives of Sν\Sd/Sλ.
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Remark 3.8.7. We can also define the standard basis of Sk(n, d) using the algebra

isomorphism

Sk(n, d) ≃
⊕

λ,µ∈Λ(n,d)

HomPk
n,d

(Sλkn, Sµkn).

Indeed, note that Sλkn is the space of Sλ-coinvariants of
⊗d kn. Hence if λ ⪯ µ

then there is a surjection ∇ : Sλkn → Sµkn. Additionally define the map ∆ :

Sµkn → Sλkn by

∆(x1 ⊗ · · · ⊗ xm) =
m∑
r=0

(x0 ⊗ x1 ⊗ · · · ⊗ xr)� (xr+1 ⊗ · · · ⊗ xm)

where x0 = 1 and� refers to the shuffle product. For σ ∈ Sd in which A = Θλ
µ(σ),

the basis element ξσµ,λ corresponds to the morphism Sµkn → Sλkn defined as the

composition:

Sµ =
⊗

i S
µi

⊗
i(
⊗

j S
aij ) ≃

⊗
j(
⊗

i S
aij )

⊗
j S

λj = Sλ⊗i∆ ⊗j∇

3.9 Appendix: Definition of the Schur algebra via web dia-

grams

In this appendix we define the Schur algebra using a diagrammatic approach

developed in [CKM14]. A more detailed account of this approach can be found in

[W19].

The main idea is to construct a category, Sk, whose objects are finite sequences

of positive integers, and in which for all n, d ∈ N:

Sk(n, d) ≃
⊕

λ,µ∈Λ(n,d)

HomSk(κ(λ), κ(µ)),

where e.g. κ(λ) is the sequence obtained from λ by removing all zero terms.

The following definition is due to [CKM14].

Definition 3.9.1 (Free spider category Fk). Let k be a commutative ring. The

free spider category, Fk, is a strict monoidal k-linear category whose objects are

finite sequences of positive integers. The monoidal product on objects is given by

concatenation, with the empty sequence ∅ as the monoidal unit.
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The morphisms of Fk are freely generated (by taking k-linear combinations,

compositions, and monoidal product) by two morphisms depicted diagrammati-

cally:

r s

r+s

: (r + s) → (r, s),

r s

r+s

: (r, s) → (r + s).

The identity morphism on an object (λ1, . . . , λn) is depicted by the diagram

λ1 λn

· · ·

The composition and monoidal operations on morphisms are depicted diagram-

matically by the following rules:

• If f : λ → µ and g : µ → ν are morphisms depicted by string diagrams, then

the composition g ◦ f is depicted by the diagram obtained by placing g on

top of f and connecting strands at the top of f with strands at the bottom

of g.

• If f : λ → µ and g : λ′ → µ′ are morphisms depicted by string diagrams,

then f ⊗ g is depicted by the diagram obtained by placing f to the left of g.

The morphisms in Fk are identified up to any planar isotopy that preserves the

upwards direction of arrows.

We call the diagrams depicting morphisms in Fk, web diagrams. It is con-

venient to draw web diagrams with strands labelled by any integer. These are

interpreted as follows: strands labelled by negative integers are interpreted as

zero morphisms, and strands labelled by 0 are to be removed from the diagram

e.g.

r+s 0

r s

s :=

r s

r+s
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Definition 3.9.2 (Complex Schur category SC). The complex Schur category SC is

the C-linear strict monoidal category obtained from FC by enforcing the following

relations among morphisms:

k

k + l

l m

k + l +m

=

k l m

l +m

k + l +m

(3.27)

m

l +m

lk

k + l +m

=

mlk

k + l

k + l +m

(3.28)

k + l

k + l

k l
=

(
k + l

l

)
k + l (3.29)

k l

k−s l+s

s

k−s+r l+s−r

r

=

k−l+r−s∑
t=0

(
k − l + r − s

t

)

k l

k+r−t l−r+t
r−t

k−s+r l+s−r
s−t

(3.30)

where k, l, r, s ∈ Z≥0.

Let SZ be the strict monoidal Z-linear subcategory of SC with the same ob-

jects as SC, and whose morphisms are the Z-span of morphisms depicted by web

diagrams.

For any commutative ring, k, let Sk be the strict monoidal k-linear category

whose objects are finite sequences of positive integers, and with morphisms

HomSk(λ, µ) := k⊗Z HomSZ(λ, µ).
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Conjecture 3.9.3. For any commutative ring k, the category Sk is equivalent to

the category obtained from Fk by enforcing the relations (3.27)-(3.30).

The following result is shown in [W19, Theorem 3.1.1] in the case k = C. The
general case follows from the case k = C by the definition of Sk.

Theorem 3.9.4. Let k be a commutative ring. For a sequence λ of positive integers,

let κ(λ) be the sequence obtained from λ by removing all zero terms. For all

n, d ∈ N, there is an algebra isomorphism:

Sk(n, d) ≃
⊕

λ,µ∈Λ(n,d)

HomSk(κ(λ), κ(µ))

defined

E
(r)
i 1λ 7→

λ1 λi−1 λi λi+1 λi+2 λn

λi+r λi+1−r

· · · r · · · ,

F
(r)
i 1λ 7→

λ1 λi−1 λi λi+1 λi+2 λn

λi−r λi+1+r

· · · r · · · .

For the remainder of this section we detail how the Schur category can be used

to describe the morphisms between divided and exterior powers in Pk
d .

Let Γk be the category whose objects are finite sequences of positive integers,

and with morphisms

HomΓk(λ, µ) := HomPk
d
(Γλk∞,Γµk∞).

The category ΓC is a strict monoidal functor with the monoidal product defined

by the external tensor product on Schur algebra modules.

The following result follows immediately from Theorem 3.9.4 and Theorem

3.8.6.
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Corollary 3.9.5. There is a monoidal equivalence of categories Sop
C → ΓC defined

r s

r+s

7→ ∆r,s : Γ
r+sk∞ → Γr,sk∞,

r s

r+s

7→ ∇r,s : Γ
r,sk∞ → Γr+sk∞.

Let Λk be the category whose objects are finite sequences of positive integers,

and with morphisms

HomΛk(λ, µ) := HomPk
d
(Λλk∞,Λµk∞).

The category ΛC has a monoidal product defined by the external tensor product

on Schur algebra modules.

For any set S = {i1 < i2 < · · · < id} ⊂ N≥1, define vS ∈ Λdk∞ by

vS := vi1 ∧ vi2 ∧ · · · ∧ vid .

Let ℓ(S, T ) = |{(i, j) ∈ S×T | i < j}|. For a set S, write
(
S
r

)
for the set of subsets

of S of size r. Define the morphisms:

∆r,s : Λ
r+sk∞ → Λr,sk∞; vS 7→ (−1)rs

∑
T∈(Sr)

(−1)ℓ(S\T,T )vT ⊗ vS\T

∇r,s : Λ
r,sk∞ → Λr+sk∞; vS ⊗ vT 7→

(−1)ℓ(S,T )vS∪T if S ∩ T = ∅

0 otherwise

A consequence of [CKM14, Theorem 3.2.1] is that there is a monoidal equiv-

alence of categories Sk → Λk defined

r s

r+s

7→ ∇r,s : Λ
r,sk∞ → Λr+sk∞,

r s

r+s

7→ ∆r,s : Λ
r+sk∞ → Λr,sk∞.
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This result is essentially a rephrasing of Donkin’s [Don93, Proposition 3.7] algebra

isomorphism

Sk(n, d) ≃ EndPk
d
(
⊕

λ∈Λ(n,d)

Λλkn).

Remark 3.9.6. By Proposition 3.4.2 (respectively Proposition 4.5.2 below), the

category of projective (respectively partial tilting) objects in Pk
d is equivalent to

the additive closure of the Karoubi envelope of Γk (respectively Λk).
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Chapter 4

Geometric reconstruction of the

Schur algebra

4.1 Motivation and outline

Mautner [Mau14, Theorem 1.1] shows that the category, PGLd
(NGLd

, k) of GLd(C)-
equivariant perverse sheaves on the nilpotent cone NGLd

⊂ gld(C) is equivalent

to the category, Pk
d , of all polynomial representations of degree d. This proof

uses Lusztig’s [Lus81] embedding of NGLd
into the complex affine Grassmannian,

GrGLd
, to show that PGLd

(NGLd
, k) is equivalent to a subcategory of the category

of perverse sheaves on GrGLd
(equivariant with respect to the loop group). This

latter subcategory is equivalent to Pk
d by Mirković-Vilonen’s geometric Satake

correspondence [MV07, Theorem 14.1].

In this section we prove the equivalence between PGLd
(NGLd

,k) and Pk
d using

the geometry of the nilpotent cone and without appealing to the geometric Satake

correspondence. For this, we define, for each λ ∈ Λ(n, d), the varieties

N̆λ := GLd×PλNPλ
and Ñλ := GLd×Pλuλ,

where Pλ = Lλ ⋉ Uλ is the parabolic subgroup of GLd with Levi factor Lλ ≃
GLλ1 × · · · ×GLλn . Define the multiplication maps

m̆λ : N̆λ → NGLd
and m̃λ : Ñλ → NGLd
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by (g, x) 7→ gxg−1. Define the perverse sheaves

Γλ := m̆λ!kÑλ
[dimNGLd

] and Λλ := m̃λ!kÑλ
[2 dimGLd /Pλ].

Theorem 4.4.1 states that if n ≥ d then
⊕

λ∈Λ(n,d) Γ
λ is a projective generator

of PGLd
(NGLd

, k) with endomorphism ring

EndPGLd
(NGLd

,k)(
⊕

λ∈Λ(n,d)

Γλ) ≃ Sk(n, d)
op.

In particular, the functor

Φn,d := HomPGLd
(NGLd

,k)(
⊕

λ∈Λ(n,d)

Γλ,−) : PGLd
(NGLd

, k) → Pk
n,d

is an equivalence of categories.

To prove this result we first give a characteristic-free version of Ginzburg’s

construction of the Schur algebra (Theorem 4.3.6). More precisely, Theorem 4.3.6

states that there is an algebra isomorphism

Sk(n, d)
op ≃

⊕
λ,µ∈Λ(n,d)

HBM
dim Ñλ+dim Ñµ

(Ñλ ×NGLd
Ñµ, k),

where HBM
∗ (−, k) refers to the Borel-Moore homology with coefficients in k. The

algebra product on the right hand side is the convolution product. This result is

shown in characteristic zero by Ginzburg [CG97, Proposition 4.2.5]. By a result

of Ginzburg [CG97, Theorem 8.6.7] (see Proposition 4.4.11), there is an algebra

isomorphism⊕
λ,µ∈Λ(n,d)

HBM
dim Ñλ+dim Ñµ

(Ñλ ×NGLd
Ñµ,k) ≃ EndPGLd

(NGLd
,k)(

⊕
λ∈Λ(n,d)

Λλ).

Achar and Mautner [AM15] define an equivalence of categories

R : DGLd
(NGLd

,k) → DGLd
(NGLd

, k)

that satisfies R(Λλ) ≃ Γλ (Lemma 4.4.8). In particular, there is an algebra

isomorphism

Sk(n, d)
op ≃ EndPGLd

(NGLd
,k)(

⊕
λ∈Λ(n,d)

Λλ) ≃ EndPGLd
(NGLd

,k)(
⊕

λ∈Λ(n,d)

Γλ).
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The evaluation of Φn,d on simple objects is described in Propositions 4.4.12.

More precisely, for a partition λ = (λ1, . . . , λn) of d, let hλ : Oλ ↪→ NGLd
be

the inclusion of the GLd-orbit of the Jordan matrix with Jordan blocks of sizes

λ1, . . . , λn. The functor Φn,d : PGLd
(NGLd

, k) → Pk
n,d maps the simple perverse

sheaf hλ!∗kOλ
[dimOλ] to the simple Sk(n, d)-module with highest weight λ. More-

over (Propositions 4.4.12 and 4.5.4),

Φn,d(Γ
λ) ≃ Γλkn and Φn,d(Λ

λ) ≃ Λλkn.

In Section 4.2 we summarise the results about the geometry of the nilpotent

cone and the varieties Ñλ and N̆λ that will be needed in the proofs and discussion

of our main result.

In Section 4.3 we review the sheaf-theoretic definition of Borel-Moore homol-

ogy and describe the basic operations on Borel-Moore homology from this perspec-

tive. Using this we prove the characteristic-free version of Ginzburg’s construction

of the Schur algebra.

In Section 4.4 we use Ginzburg’s construction to show that the category

PGLd
(NGLd

,k) is equivalent to Pk
n,d if n ≥ d.

In Section 4.5 we describe the highest weight structure on PG(N ,k) and eval-

uate the equivalence PG(N , k) ≃ Pk
n,d on partial tilting objects.

In an appendix (Section 4.6) we list some properties that should be satisfied

by a geometric version of the homogeneous external product of Schur algebra

modules.

Throughout this chapter, by a variety we mean a quasiprojective complex

algebraic variety i.e. a subset of CPn that is locally closed in the Zariski topology.

Topological concepts (open, closed, etc.) will usually be with respect to the Zariski

topology unless stated otherwise. The only exception being the dimension of a

variety, which will always mean dimension as a complex variety.

The following two facts about varieties are important and we will sometimes

apply these without mentioning them:

• Every variety X has a smooth Zariski-dense open subset (all non-singular

points form an open dense subset).
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• Every variety is locally compact, locally path connected, and locally con-

tractible.

Let Db(X,k) be the bounded constructible derived category of sheaves on a

variety X with coefficients in k. Write kX for the constant sheaf on X (con-

centrated in degree zero). Define the canonical surjection aX : X → pt, and

write DX := a!Xkpt for the dualizing sheaf. Write D := RHomDb(X)(−,DX) :

Db(X,k)op → Db(X,k) for the Verdier duality functor.

Write P (X,k) for the category of perverse sheaves on X with coefficients in

k.
Let Db

G(X,k) be the G-equivariant derived category and PG(X,k) the category
of G-equivariant perverse sheaves. If f : X → Y is a G-equivariant map of G-

varieties then the usual sheaf functors f∗, f
∗, f!, f

!, as well as the sheaf products

RHom,⊗ have analogues in the equivariant setting (see e.g. [Ach21, Section 6.5]).

In this chapter we will never need to consider the equivariant structure on

objects in PG(X,k). This is due to the following result about perverse sheaves

that are equivariant with respect to a connected algebraic group (see e.g. [Ach21,

Proposition 6.2.17] for a proof).

Proposition 4.1.1. Let G be a connected algebraic group acting on a variety X

and let σ, pr2 : G×X → X be the action map σ(g, x) = g · x and projection map

pr2(g, x) = x. The category PG(X,k), of G-equivariant perverse sheaves on X

is equivalent to the full subcategory of P (X,k) consisting of objects F in which

pr∗2F [dimG] ≃ σ∗F [dimG] in P (G×X,k).

Likewise, if G is a connected algebraic group, then the sheaf operations f∗,

f∗, f!, f
!, RHom, ⊗L on G-equivariant perverse sheaves are just the usual sheaf

operations on perverse sheaves.

If h : Y ↪→ X is the inclusion of a locally closed subvariety, and F is an object

in Db(Y,k), then we also write F for the object h!F ∈ Db(X,k). For example, the

skyscraper sheaf in Db(X,k) supported on a point x ∈ X (and concentrated at

degree 0) is simply denoted k{x}. This notation is primarily used when h is one

of the closed embeddings

Oλ ↪→ NGLd
↪→ gld,
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where Oλ ⊂ NGLd
is a GLd-orbit. For example, perverse sheaves in PGLd

(Oλ,k)
will often be thought of as perverse sheaves in PGLd

(NGLd
, k) (and sometimes as

perverse sheaves in PGLd
(gld,k)) that are supported on Oλ.

Most of the results in sheaf theory that we need follow from the discussion

of recollements in Chapter 2. We recall an additional result called proper base

change: For a Cartesian square

X ′ X

Y ′ Y

f

g

g′

f ′

there are natural isomorphisms

g∗f! ≃ f ′
! g

′∗ and f !g∗ ≃ g′∗f
′!.

See e.g. [Ach21, Theorem 1.2.12] for a proof of this.

Throughout this chapter we use lowercase fraktur letters to denote the Lie

algebra of a Lie group denoted by the corresponding uppercase letter.

For a survey on the use of perverse sheaves in modular representation theory

that includes examples of calculating of table of stalks for perverse sheaves on the

nilpotent cone, the reader should consult [JMW12].

4.2 The nilpotent cone in type A

For a connected complex reductive Lie group H with Lie algebra h, write NH

for the closed subvariety of h consisting of nilpotent elements. The variety NH

is called the nilpotent cone on h. We regard NH (and h) as a H-space under the

conjugation action.

Let G = GLd(C) and write N := NG. We recount here some geometric

features of N that will be needed in later constructions. For a more complete

survey of the geometry of nilpotent cones of Lie algebras see e.g. [CM93] and

[Hen15].

For a partition λ = (λ1, . . . , λm) of d, let Oλ be the G-orbit in N consisting of

nilpotent matrices whose Jordan form consists of Jordan blocks of sizes λ1, . . . , λm.
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Note that if λ∨ is the dual partition of λ, then the orbit Oλ∨ is the set of matrices

x ∈ g in which dim(kerxi/ kerxi−1) = λi for all 1 ≤ i ≤ m. These G-orbits satisfy

the dimension formula

dimOλ∨ = 2dimG/Pλ = d2 − λ2
1 − · · · − λ2

m.

We consider N as a stratified space with respect to the G-orbits. The closure

order for the strata is given by the dominance order on partitions [Ger59] i.e.

Oλ ⊂ Oµ if and only if λ1 + · · ·+ λk ≤ µ1 + · · ·µk for all k ≥ 1 (where partitions

are extended by zeros at the end if necessary). In other words, x ∈ Oλ if and only

if dimkerxi ≤ λ∨
i . In particular, O(1,...,1) = {0} is the unique closed orbit in N ,

and O(d) is the unique dense orbit in N .

We now define and describe some important properties of spaces related to

N . These spaces can be summarised by the following diagram, which we describe

below.

lλ pλ g̃λ := G×Pλ pλ g

NLλ
NPλ

N̆λ := G×Pλ NPλ
N

{0} uλ Ñλ := G×Pλ uλ Oλ∨

mλ

m̆λ

m̃λ

(4.1)

Let B ⊂ G be the Borel subgroup consisting of upper triangular invertible

matrices. For a weak composition λ = (λ1, . . . , λn) of d, let Pλ ⊃ B be the

parabolic subgroup of G with Levi factor, Lλ, consisting of invertible diagonal

block matrices of sizes λ1, . . . , λn i.e. Lλ ≃ GLλ1 × · · ·×GLλn and Pλ = Lλ⋉Uλ,

for a unipotent subgroup Uλ. For example, P(1,...,1) = B and P(d) = G. Recall

that the partial flag varieties G/Pλ can be identified with the spaces

Pλ := {parabolic subalgebras of g conjugate to pλ}

F lλ := {0 = F0 ⊂ F1 ⊂ · · · ⊂ Fm = Cn | dimFi/Fi−1 = λi}

Indeed, G acts transitively on Pλ by conjugation, with stabiliser Pλ. So there is

a bijection G/Pλ → Pλ defined gPλ 7→ gpλg
−1. The group G acts transitively
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on F lλ by the left natural action on flags. The isomorphism Pλ → F lλ is the

G-equivariant map sending pλ to the flag Eλ
∗ = (0 ⊂ Eλ

1 ⊂ · · · ⊂ Eλ
m = Cn) defined

by Eλ
i = C{e1, . . . , eλ1+···+λi

}. The inverse F lλ → Pλ sends a flag F∗ the parabolic

subalgebra {x ∈ g | x(Fi) ⊂ Fi}.
Consider the diagonal action of G on G/Pλ ×G/Pµ. The G-orbits of G/Pλ ×

G/Pµ are in bijection with the set of double cosetsSλ\Sd/Sµ. Indeed, for σ ∈ Sd,

let σ̇ ∈ G be the corresponding permutation matrix. The map

Sd → G\(G/Pλ ×G/Pµ)

sending σ ∈ Sd to the orbit

Oσ
λ,µ := G · (Pλ, σ̇Pµ)

is surjective and Oσ1
λ,µ = Oσ2

λ,µ if and only if Sλσ1Sµ = Sλσ2Sµ. For any weak

compositions λ, µ of d, the G-orbit Oe
λµ ⊂ G/Pλ × G/Pµ is a smooth closed

subvariety (see e.g. [BLM90, Lemma 3.6]).

Remark 4.2.1. The closure order for the stratification of G/Pλ×G/Pµ is described

in [BLM90, Lemma 3.6]. More precisely, let λ ∈ Λ(m, d) and µ ∈ Λ(n, d). Let

σ1, σ2 ∈ Sd and define the matrices A = Θλ
µ(σ1) and B = Θλ

µ(σ2) as in Definition

3.5.1. Then there is an inclusion Oσ1
λ,µ ⊆ Oσ2

λ,µ if and only if for all i ∈ [m], j ∈ [n],∑
p≤i;q≤j

Bpq ≤
∑

p≤i;q≤j

Apq.

In the closure order, Oe
λµ is minimal. The unique maximal orbit is Ow0

λµ, where

w0 ∈ Sd is the longest element. For the dimensions of the orbits see [BLM90,

Lemma 2.2].

For an algebraic group H with closed subgroup P ⊂ H, and P -variety X, the

induction space H ×P X is the quotient of H × P by the P -action

g · (h, x) = (hg−1, g · x).

The map H ×P X → H/P mapping (h, x) 7→ hP makes H ×P X into a

H-equivariant fibre bundle over H/P with fibre X.
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Define the partial Grothendieck resolution corresponding to a weak composi-

tion λ of d:

g̃λ := G×Pλ pλ.

The partial Grothendieck resolutions have the following alternative descriptions.

Proposition 4.2.2. There are bijections

G×Pλ pλ ≃ {(x, p) ∈ g× Pλ | x ∈ p} ≃ {(x,F∗) ∈ g×F lλ | x(Fi) ⊂ Fi}.

Proof. The second bijection is induced from the bijection Pλ ≃ F lλ. The first

bijection is defined (g, x) 7→ (gxg−1, gpλg
−1). Indeed it is straightforward to check

that this map is well-defined with well-defined inverse (x, gpλg
−1) 7→ (g, g−1xg).

Define the multiplication map mλ : G×Pλ pλ → g by (g, x) 7→ gxg−1. In terms

of the alternate descriptions of g̃λ in Proposition 4.2.2, the multiplication map

mλ : g̃λ → g is simply the projection into the first component: (x, p) 7→ x and

(x,F∗) 7→ x.

Define the parabolic Springer bundle:

N̆λ := m−1
λ (N ) = G×Pλ NPλ

= G×Pλ (uλ +NLλ
)

For example, N̆(1,...,1) ≃ G ×B u(1,...,1) is the usual Springer resolution. This is a

resolution of singularities of N . At the other extreme is N̆(d) ≃ N . Each variety

N̆λ has dimension d2 − d, and all except for N̆(1,...,1) are singular varieties.

As in Proposition 4.2.2, there is a bijection

N̆λ ≃ {(x, p) ∈ N × Pλ | x ∈ p} ≃ {(x,F∗) ∈ N × F lλ | x(Fi) ⊂ Fi}.

Define the multiplication map m̆λ : N̆λ → N to be the restriction of mλ. The

G-orbits of N̆λ are the subvarieties G ×Pλ (uλ + C), where C ⊂ NLλ
is an Lλ-

orbit. For each G-orbit O ⊂ N̆λ, the proper G-equivariant map m̆λ : N̆λ|O → N
is semismall (see e.g. [Ach21, Theorem 8.4.10]). A consequence of this is that

the pushforward map m̆λ! : DG(N̆λ,k) → DG(N , k) is t-exact for the equivariant
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perverse t-structure (see e.g. [Ach21, Theorem 3.8.9]). Further details about the

geometry of N̆λ can be found in [Lus84].

Define the partial Springer resolution:

Ñλ := m−1
λ (Oλ∨) ≃ G×Pλ uλ.

Indeed, Oλ∨ = {x ∈ N | dimkerxi ≤ λi} = G · uλ. As in Proposition 4.2.2, there

is a bijection

Ñλ ≃ {(x,F∗) ∈ N × F lλ | x(Fi) ⊂ Fi−1}.

The vector bundle Ñλ → G/Pλ; (g, x) 7→ gPλ is isomorphic to the cotangent

bundle T ∗(G/Pλ) → G/Pλ. Indeed, the cotangent space of a point gPλ ∈ G/Pλ

can be identified with guλg
−1 via the isomorphism g∗ ≃ g given by the Killing

form (see e.g. [CG97, Proposition 4.1.2] for a more detailed proof).

Of central importance to the geometric construction of the Schur algebra are

the partial Steinberg varieties:

Ñλµ := Ñλ ×N Ñµ.

As in Proposition 4.2.2, there is a bijection

Ñλµ ≃ {(x, p1, p2) ∈ Oλ∨ ∩ Oµ∨ × Pλ × Pµ | x ∈ p1 ∩ p2}

≃ {(x,F (1)
∗ ,F (2)

∗ ) ∈ N × F lλ ×F lµ | x(F (1)
i ) ⊂ F (1)

i−1, x(F (2)
i ) ⊂ F (2)

i−1}.

Let pr23 : Ñλµ → G/Pλ × G/Pµ be the projection onto the second and third

components in either of these descriptions of Ñλµ. For σ ∈ Sd, consider the

variety

pr−1
23 (O

σ
λµ) ≃ {(x, g · pλ, gσ̇ · pµ) ∈ Ñλµ | g ∈ G}.

The following result is shown in [CG97, Proposition 4.1.6] and [CG97, Corol-

lary 4.1.8].

Proposition 4.2.3. There is an isomorphism

Ñλ × Ñµ ≃ T ∗G/Pλ × T ∗G/Pµ ≃ T ∗(G/Pλ ×G/Pµ)
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that identifies pr−1
23 (Oσ

λµ) with the conormal bundle, T ∗
Oσ

λµ
(G/Pλ ×G/Pµ), to Oσ

λµ

in G/Pλ ×G/Pµ. In particular, Ñλµ is equidimensional and

dim Ñλµ =
1

2
(dim Ñλ + dim Ñµ).

Moreover, the irreducible components of Ñλµ are exactly the closed irreducible

subvarieties

Ñ σ
λµ := pr−1

23 (Oσ
λµ),

for σ ∈ Sd, and Ñ σ1
λµ = Ñ σ2

λµ if and only if Sλσ1Sµ = Sλσ2Sµ.

Example 4.2.4. Consider the variety Ñ(1,1),(1,1). This is the disjoint union of the

subvarieties

pr−1
23 (O

e
(1,1),(1,1)) ≃ {(x, b1, b1) ∈ N × P(1,1) × P(1,1) | x ∈ b1}

and

pr−1
23 (O

(12)
(1,1),(1,1)) ≃ {(0, b1, b2) ∈ N × P(1,1) × P(1,1) | b1 ̸= b2}.

The irreducible components of Ñ(1,1),(1,1) are

Ñ e
(1,1),(1,1) = pr−1

23 (O
e
(1,1),(1,1))

and

Ñ (12)
(1,1),(1,1) ≃ {(0, b1, b2) ∈ N × P(1,1) × P(1,1)}.

Remark 4.2.5. The variety Ñ(1,...,1),(1,...,1) is known as the Steinberg variety. For

a survey of results in geometric representation theory that are proven using the

Steinberg variety see [DR09].

4.3 Geometric reconstruction of the Schur algebra

In this section we define the convolution product on Borel-Moore homology and

construct the Schur algebra using the convolution product on the Borel-Moore

homology of the varieties Ñλµ := Ñλ ×N Ñµ. Before doing this we recall the

construction of Borel-Moore homology using sheaf theory, and define the basis of

fundamental classes for the top Borel-Moore homology space.
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For F ∈ Db(X) the sheaf cohomology of F is defined

H∗(X,F) := RΓ(F) = HomDb(X)(kX ,F).

Define the k-th Borel-Moore homology group by

HBM
k (X,k) := H−k(X,DX) = HomDb(X)(kX [k],DX).

If X is a smooth variety, then say that a morphism of varieties f : X → Y is

smooth of relative dimension d if all fibres of f are d-dimensional.

If f : X → Y is a smooth morphism of relative dimension d then f∗ ≃ f ![−2d].

In particular if X is a smooth variety of dimension d, then the canonical surjection

aX : X → pt is smooth of relative dimension d and so DX ≃ kX [2d]. In particular

we recover the well-known isomorphism:

HBM
k (X,k) ≃ H2d−k(X,k).

If f : X → Y is smooth of relative dimension d, then define the pullback map

f# : HBM
k (Y,k) → HBM

k+2d(X,k) by the natural map

f# : Hom(kY [k],DY ) → Hom(f∗kY [k], f∗DY ) ≃ Hom(kX [k + 2d],DX),

where since f is smooth we use the identification f∗DY ≃ f !DY [−2d] = DX [−2d].

If f : X → Y is proper then f! = f∗ and so we can define a map

f# : RHom(f∗F , f !G) ≃ RHom(F , f!f
!G) → RHom(F ,G).

Applying this to F = kY , G = DY gives the pushforward map

f# : HBM
k (X,k) → HBM

k (Y,k).

Let i : Z ↪→ X be Zariski closed with open complement j : U ↪→ X, and

consider the triangle

i∗DZ ≃ i∗i
!DX → DX → j∗j

∗DX ≃ j∗DU →

and corresponding long exact sequence

· · · → Hom(kX , i∗DZ [−k]) → Hom(kX ,DX [−k]) → Hom(kX , j∗DU [−k]) → Hom(kX , i∗DZ [−k+1]) → · · ·
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After applying adjunctions we recover the long exact sequence in Borel-Moore

homology:

HBM
k (Z, k) HBM

k (X,k) HBM
k (U,k) HBM

k−1 (Z,k)
i# j#

Proposition 4.3.1. Let X be an irreducible variety of dimension d, and let j : U ↪→
X be the inclusion of a Zariski open subset. Then j# : HBM

2d (X,k) → HBM
2d (U,k)

is an isomorphism.

Proof. Let Z = X \ U . Since X is irreducible, dimZ < d. The result follows by

the long exact sequence in Borel-Moore homology.

A consequence of Proposition 4.3.1 is that if X is an irreducible variety of

dimension d and U is a smooth Zariski open subvariety of X, then there is an

isomorphism

HBM
2d (X,k) ≃ HBM

2d (U,k) ≃ HomDb(U)(kU , kU ).

Let [X] ∈ HBM
2d (X,k) be the element corresponding to 1 : kU → kU under this

isomorphism. In the case that X is smooth, [X] : kX [2d] → DX is the canonical

isomorphism. The element [X] ∈ HBM
2d (X,k) is independent of the choice of

smooth open subset U ⊂ X (see e.g. [Ach21, Lemma 2.11.8]).

IfX is any (not necessarily irreducible) variety, and i : Z ↪→ X is an irreducible

closed subvariety of dimension m, then we write [Z] := i#[Z] ∈ HBM
2m (X,k) where

i# : HBM
2m (Z, k) → HBM

2m (X,k).
The element [Z] ∈ HBM

2m (X,k) is called the fundamental class corresponding

to the irreducible closed subvariety Z ⊂ X.

The following result is well-known (see e.g. [Ach21, Proposition 2.11.11] for a

proof).

Proposition 4.3.2. Let X be a variety of dimension d, and let X1, . . . , Xk be it’s

d-dimensional irreducible components. Then HBM
2d (X,k) is a free k-module with

basis [X1], . . . , [Xk].

A corollary of this result is that

HBM
2d (X,k) ≃ k⊗HBM

2d (X,Z)
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for any commutative algebra k. By Proposition 4.2.3, it follows from this that

HBM
dim Ñλ+dim Ñµ

(Ñλµ, k) has a basis of fundamental classes, [Ñ σ
λµ], for representa-

tives σ of Sλ\Sd/Sµ.

If X is smooth of dimension d and A and B are closed subvarieties, then there

is an intersection pairing

∩ : HBM
i (A, k)×HBM

j (B, k) → HBM
i+j−2d(A ∩B, k).

To avoid developing more theory than we will use, we do not define the intersection

pairing here.

Definition 4.3.3 (Convolution product). Let M1, M2, M3 be smooth varieties, and

define the projections pij : M1 × M2 × M3 → Mi × Mj . For closed subvarieties

Z12 ⊂ M1×M2, Z23 ⊂ M2×M3 define the closed subvariety, Z13, of M1×M3 by:

Z13 = Z12 ◦ Z23

= {(m1,m3) ∈ M1 ×M3 | ∃m2 ∈ M2 : (m1,m2) ∈ Z12, (m2,m3) ∈ Z23}.

Suppose the projection p13 : M1 ×M2 ×M3 → M1 ×M3 restricts to a proper

map:

p13 : p
−1
12 (Z12) ∩ p−1

23 (Z23) → Z13.

Define the convolution product:

HBM
i (Z12,k)×HBM

j (Z23,k) → HBM
i+j−2 dimM2

(Z13, k)

by

c ∗ d = (p13)#(p
#
12(c) ∩ p#23(d)).

We now recall a result about the convolution product on the Borel-Moore

homology of cotangent bundles of smooth complex varieties.

Let X1, X2, X3 be smooth varieties and consider the diagram:

X1 ×X2 ×X3

X1 ×X2 X1 ×X3 X2 ×X3

Y12 Y13 = Y12 ◦ Y23 Y23

p12 p13
p23
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in which Yij ⊂ Xi ×Xj is a closed embedding. Consider the following diagram:

T ∗(X1 ×X2 ×X3)

T ∗(X1 ×X2) T ∗(X1 ×X3) T ∗(X2 ×X3)

Z12 = T ∗
Y12

(X1 ×X2) Z13 = T ∗
Y13

(X1 ×X3) Z23 = T ∗
Y23

(X2 ×X3)

pr12 pr13
pr23

The following result is proven by Ginzburg [CG97, Theorem 2.7.26].

Proposition 4.3.4. Assume that Y12 and Y23 satisfy two conditions:

(a) The spaces p−1
12 (Y12) and p−1

23 (Y23) are transverse.

(b) The map p13 : p
−1
12 (Y12)∩ p−1

23 (Y23) → Y13 is a smooth locally trivial oriented

fibration with smooth base Y13 and smooth and compact fibre F .

Then the following holds:

(i) There is a set equality Z13 = Z13 ◦ Z23.

(ii) The map pr13 : pr−1
12 (Z12) ∩ pr−1

23 (Z23) → Z13 is a smooth locally trivial

oriented fibration with fiber F .

(iii) In HBM
∗ (Z13, k):

[Z12] ∗ [Z23] = χ(F ) · [Z13],

where χ(F ) is the Euler characteristic of F .

Example 4.3.5. Consider the case

X1 = G/Pλ, X2 = G/Pλ+rαi
, X3 = G/Pλ+(r+s)αi

.

Let

Y12 = Oe
λ,λ+rαi

≃ {(F∗,F ′
∗) ∈ F lλ ×F lλ+rαi

| Fi ⊂ F ′
i ,Fj = F ′

j if j ̸= i}

and

Y23 = Oe
λ+rαi,λ+(r+s)αi

≃ {(F∗,F ′
∗) ∈ F lλ+rαi

×F lλ+(r+s)αi
| Fi ⊂ F ′

i ,Fj = F ′
j if j ̸= i}.
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Note that for any pair (F∗,F ′
∗) in Y12 (respectively Y23), dimF ′

i/Fi = r (respec-

tively dimF ′
i/Fi = s). Then

Y13 = Oe
λ,λ+(r+s)αi

≃ {(F∗,F ′
∗) ∈ F lλ ×F lλ+(r+s)αi

| Fi ⊂ F ′
i ,Fj = F ′

j if j ̸= i}

and

Z12 ≃ Ñ e
λ,λ+rαi

, Z23 = Ñ e
λ+rαi,λ+(r+s)αi

, Z13 = Ñ e
λ,λ+(r+s)αi

.

Proposition 4.3.4 says that in HBM
∗ (Ñ e

λ,λ+(r+s)αi
,k):

[Ñ e
λ,λ+rαi

] ∗ [Ñ e
λ+rαi,λ+(r+s)αi

] =

(
r + s

r

)
[Ñ e

λ,λ+(r+s)αi
].

Indeed p−1
12 (Y12) ∩ p−1

23 (Y23) is the variety

{(F∗,F ′
∗,F ′′

∗ ) ∈ F lλ×F lλ+rαi
×F lλ+(r+s)αi

| Fi ⊂ F ′
i ⊂ F ′′

i ,Fj = F ′
j = F ′′

j if j ̸= i},

where dimF ′′
i /F ′

i = s and dimF ′
i/Fi = r for each (F∗,F ′

∗,F ′′
∗ ) ∈ p−1

12 (Y12) ∩
p−1
23 (Y23). In particular the fibre of the map p13 : p−1

12 (Y12) ∩ p−1
23 (Y23) → Y13 is

homeomorphic to the Grassmannian of r dimensional subspaces of Cr+s. This

Grassmannian has Euler characteristic
(
r+s
r

)
.

Theorem 4.3.6. There is an algebra isomorphism

Sk(n, d)
op ≃

⊕
λ,µ∈Λ(n,d)

HBM
dim Ñλ+dim Ñµ

(Ñλµ,k)

defined

1λ 7→ [Ñ e
λ,λ]

E
(r)
i 1λ 7→ [Ñ e

λ,λ+rαi
]

F
(r)
i 1λ 7→ [Ñ e

λ,λ−rαi
]

Proof. Define the algebra

Hk(n, d) :=
⊕

λ,µ∈Λ(n,d)

HBM
dim Ñλ+dim Ñµ

(Ñλµ, k).
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Note that identity in Hk(n, d) is the element

1 :=
∑

λ∈Λ(n,d)

[Ñ e
λ,λ].

For λ ∈ Zn in which λ /∈ Λ(n, d), we set

[Ñ σ
λ,µ] = [Ñ σ

µ,λ] = 0 ∈ Hk(n, d)

for any σ ∈ Sd and any µ ∈ Zn.

By Proposition 4.3.2, HZ(n, d) is the Z-subalgebra of HC(n, d) spanned by the

fundamental classes [Ñ σ
λµ] for all λ, µ ∈ Λ(n, d) and σ ∈ Sd. Ginzburg [CG97,

Proposition 4.2.5] defines an isomorphism Ψ : SC(n, d)
op → HC(n, d) that sends

1λ 7→ [Ñ e
λ,λ], Ei1λ 7→ [Ñ e

λ,λ+αi
], Fi1λ 7→ [Ñ e

λ,λ−αi
].

For completeness we sketch a proof of Ginzburg’s result. By Proposition 3.1.3,

to show that Ψ : SC(n, d)
op → HC(n, d) is well-defined it suffices to check that the

opposite of relations (3.9)-(3.12) hold in HC(n, d). That is,

[Ñ e
µ,µ] ∗ [Ñ e

λ,λ] = δλ,µ[Ñ e
λ,λ], (4.2)

[Ñ e
λ,λ] ∗ [Ñ e

λ,λ+αi
] = [Ñ e

λ,λ+αi
] ∗ [Ñ e

λ+αi,λ+αi
],

[Ñ e
λ,λ] ∗ [Ñ e

λ,λ−αi
] = [Ñ e

λ,λ−αi
] ∗ [Ñ e

λ−αi,λ−αi
],

(4.3)

[Ñ e
λ,λ−αi

] ∗ [Ñ e
λ−αi,λ

] = [Ñ e
λ,λ+αi

] ∗ [Ñ e
λ+αi,λ

] + (λi − λi+1)[Ñ e
λ,λ] (4.4)

[Ñ e
λ,λ−αj

] ∗ [Ñ e
λ−αj ,λ−αj+αi

] = [Ñ e
λ,λ+αi

] ∗ [Ñ e
λ+αi,λ+αi−αj

] (i ̸= j), (4.5)

Equations (4.2) and (4.3) follow from the definition of the convolution product.

Equation (4.5) follows from Proposition 4.3.4. A proof of Equation (4.4) is given

in [CG97, Equation (4.3.8)].

The surjectivity of Ψ : SC(n, d)
op → HC(n, d) is shown in [CG97, Proposition

4.3.14]. Since dimSC(n, d)
op = dimHC(n, d), the map Ψ : SC(n, d)

op → HC(n, d)

is an isomorphism.

It follows from Example 4.3.5 that Ψ : SC(n, d)
op → HC(n, d) maps

E
(r)
i 1λ 7→ [Ñ e

λ,λ+rαi
] and F

(r)
i 1λ 7→ [Ñ e

λ,λ−rαi
].
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Indeed, by induction on r:

Ψ(E
(r)
i 1λ) =

1

r
Ψ(E

(1)
i 1λ) ∗Ψ(E

(r−1)
i 1λ+αi

)

=
1

r
[Ñ e

λ,λ+αi
] ∗ [Ñ e

λ+αi,λ+rαi
]

= [Ñ e
λ,λ+rαi

].

Hence Ψ maps SZ(n, d)
op isomorphically onto the Z-subalgebra of HZ(n, d)

generated by the fundamental classes [Ñ e
λ,λ], [Ñ e

λ,λ+rαi
], [Ñ e

λ,λ−rαi
] for each λ ∈

Λ(n, d), each i ∈ [n − 1], and each r ∈ N. Since SZ(n, d) and HZ(n, d) are

free Z-modules of equal rank, the embedding Ψ : SZ(n, d)
op ↪→ HZ(n, d) is an

isomorphism. The result follows.

The following question follows naturally from Theorem 4.3.6.

Open Question 4.3.7. Where does the the isomorphism SC(n, d)
op → HC(n, d) in

Theorem 4.3.6 send an arbitrary standard basis element ξσµ,λ defined in Section

3.8?

4.4 A new proof of Mautner’s equivalence PG(N ,k) ≃ Sk(n, d)-mod

In this section we use the characteristic-free version of Ginzburg’s construction of

the Schur algebra to prove the following result.

Theorem 4.4.1. If n ≥ d, then the perverse sheaf

Γn,d :=
⊕

λ∈Λ(n,d)

m̆λ!kN̆λ
[dimN ]

is a projective generator of PG(N , k), and Sk(n, d)
op ≃ EndPG(N ,k)(Γn,d).

In particular, the functor

HomPG(N ,k)(Γn,d,−) : PG(N , k) → Sk(n, d)-mod

is an equivalence of categories.

102



To prove this theorem we use Achar and Mautner’s geometric Ringel duality

functor [AM15] to define an algebra isomorphism (Lemma 4.4.8)

EndPG(N ,k)(Γn,d) ≃ EndPG(N ,k)(
⊕

λ∈Λ(n,d)

m̃λ!kÑλ
[2 dimG/Pλ]),

and use the Ginzburg construction of the Schur algebra to show (Proposition

4.4.11) that

Sk(n, d)
op ≃ EndPG(N ,k)(

⊕
λ∈Λ(n,d)

m̃λ!kÑλ
[2 dimG/Pλ]).

Lemma 4.4.3 together with Lemma 4.4.9 show that the object Γn,d is projective.

In Sections 4.4.1 and 4.4.2 we recall basic properties of the parabolic induction

and the geometric Ringel duality functors on PG(N ,k).
In Section 4.4.3 we prove Theorem 4.4.1 and evaluate the equivalence PG(N , k) ≃

Pk
n,d on simple, projective, and injective objects.

4.4.1 Parabolic induction functors

Consider the following diagram in which the squares are Cartesian.

lλ pλ g̃λ := G×Pλ pλ g

NLλ
NPλ

N̆λ := G×Pλ NPλ
N

{0} uλ Ñλ := G×Pλ uλ Oλ∨

pλ qλ mλ

m̆λ

m̃λ

q̆λ

q̃λ

p̆λ

p̃λ

Here, pλ : pλ → pλ/uλ = lλ is the quotient map and qλ : pλ → G ×Pλ pλ is the

section x 7→ (e, x), where e ∈ G is the identity matrix. Recall the following facts:

• Any Lλ-variety X can be regarded as a Pλ-variety with Pλ action factoring

through the quotient Pλ → Lλ. For such an Lλ-variety X, the forgetful

functor ForPλ
Lλ

: Db
Pλ
(X,k) → Db

Lλ
(X,k) is an equivalence of categories that

is t-exact for the perverse t-structure [BL94, Theorem 3.7.3] (see also [Ach21,

Theorem 6.6.16]).
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• If X is a Pλ-variety and q : X → G ×Pλ X is the map x 7→ (e, x), then the

functor

QX := q∗λ ◦ ForGPλ
[−dimG/Pλ] : Db

G(G×Pλ X,k) → Db
Pλ
(X,k)

is an equivalence of categories that is t-exact for the perverse t-structure

[BL94, Theorem 2.6.3] (see also [Ach21, Theorem 6.5.11]). Moreover, there

is a natural isomorphism QX ≃ q! ◦ ForGPλ
[dimG/Pλ].

• The map pλ : pλ → lλ is smooth of relative dimension dimG/Pλ and so the

functor

p∗λ[dimG/Pλ] ≃ p!λ[−dimG/Pλ] : Db
Pλ
(pλ, k) → Db

Pλ
(lλ,k)

is t-exact for the perverse t-structure (see e.g. [Ach21, Proposition 3.6.1]).

Moreover, since m : g̃λ → g is proper, the functor

mλ! ≃ mλ∗ : Db
G(g̃λ,k) → Db

G(g, k)

is t-exact for the perverse t-structure.

For each weak composition λ of d, define the parabolic induction functor

indλ := mλ! ◦Q−1
pλ

◦ p∗λ[dimG/Pλ] ◦ (ForPλ
Lλ

)−1.

By the above remarks, this functor is t-exact for the perverse t-structure. More-

over

indλ ≃ mλ∗ ◦Q−1
pλ

◦ p!λ[−dimG/Pλ] ◦ (ForPλ
Lλ

)−1 : Db
Lλ

(lλ, k) → Db
G(g,k).

Let iλ = mλ ◦ qλ : pλ ↪→ g be the inclusion map. The functor indλ has left and

right adjoints resλ := pλ!i
∗
λ and res!λ := pλ∗i

!
λ respectively (here we are suppressing

the forgetful functors in the notation).

Remark 4.4.2. The parabolic induction functor has an alternative description:

indλ = ΓG
Pλ

◦ iλ∗ ◦ p!λ ◦ (ForPλ
Lλ

)−1 : Db
Lλ

(lλ,k) → Db
G(g, k),
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where ΓG
Pλ

: Db
Pλ
(g,k) → Db

G(g,k) is the right adjoint to the forgetful functor

Db
G(g, k) → Db

Pλ
(g,k) (this adjoint is defined in [BL94, Theorem 3.7.1]). See

[AHJR16, Lemma 2.14] for a proof that the two descriptions of parabolic induction

are equivalent.

The functor indλ sends objects supported on NLλ
(respectively {0}) to objects

supported on NG (respectively Oλ∨). Indeed, this can be checked using proper

base change. In particular, indλ : Db
Lλ

(lλ,k) → Db
G(g, k) restricts to functors

˘indλ :=m̆λ! ◦Q−1
NPλ

◦ p̆∗λ[dimG/Pλ] ◦ (ForPλ
Lλ

)−1 : Db
Lλ

(NLλ
, k) → Db

G(N ,k)

˜indλ :=m̃λ! ◦Q−1
uλ

◦ p̃∗λ[dimG/Pλ] ◦ (ForPλ
Lλ

)−1 : Db
Lλ

({0},k) → Db
G(Oλ∨ ,k)

Likewise, the restriction functors resλ, res
!
λ : Db

G(g,k) → Db
Lλ

(lλ, k) restrict

to functors ˘resλ, ˘res!λ : Db
G(N ,k) → Db

Lλ
(NLλ

,k) and ˜resλ, ˜res!λ : Db
G(Oλ∨ , k) →

Db
Lλ

({0},k). Moreover, the functors ˘resλ, ˘res!λ, ˜resλ, ˜res!λ are t-exact for the

perverse t-structure [AHR15, Proposition 4.7].

For a weak composition λ of d, define the perverse sheaves

Γλ := indλ(kNLλ
[dimNLλ

]) ≃ m̆λ!kN̆λ
[dimN ],

Sλ := indλ(DNLλ
[dimNLλ

]) ≃ DΓλ,

Λλ := indλ k{0} ≃ m̃λ!(kÑλ
[2 dimG/Pλ]).

For example, Γ(1,...,1) ≃ S(1,...,1) ≃ Λ(1,...,1) ≃ m̃λ!kÑ(1,...,1)
[dimN ] is the Springer

sheaf. At the other extreme,

Γd ≃ kN [dimN ], Sd ≃ DN [dimN ], and Λd ≃ k{0}.

Lemma 4.4.3. For each weak composition λ of d:

(i) The perverse sheaf Γλ ∈ PG(N ,k) is projective.

(ii) The perverse sheaf Sλ ∈ PG(N ,k) is injective.

Proof. It follows immediately from [AM15, Proposition 5.1] that for any weak

composition λ of d, the perverse sheaf kNLλ
[dimNLλ

] is projective in PLλ
(NLλ

,k).
Since ˘indλ : PLλ

(NLλ
,k) → PG(N , k) has an exact right adjoint, the perverse sheaf
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Γλ = ˘indλ(kNLλ
[dimNLλ

]) is projective in PG(NG,k). Statement (ii) follows by

the dual argument.

Remark 4.4.4. Given F ∈ DGLm(NGLm ,k), and G ∈ DGLn(NGLn , k), the complex

F ⊠ G is a GLm×GLn-equivariant sheaf on NGLm+n . There is a product

−⋆− := ind(m,n)(−⊠−) : DGLm(NGLm ,k)×DGLn(NGLn , k) → DGLm+n(NGLm+n ,k).

Moreover there are natural isomorphisms

(F ⋆ G) ⋆H ∼= F ⋆ (G ⋆H) and D(F ⋆ G) ∼= DF ⋆ DG. (4.6)

Indeed see e.g. [Ach21, Lemma 7.2.4, Lemma 7.2.7] for proofs about the analo-

gous statements about the convolution product on equivariant sheaves on the flag

variety.

It follows directly from the definition that Λλ = Λλ1 ⋆ · · · ⋆ Λλn , Γλ = Γλ1 ⋆

· · · ⋆ Γλn , and Sλ = Sλ1 ⋆ · · · ⋆ Sλn .

4.4.2 Geometric Ringel duality

We next describe the geometric version of Ringel duality due to Achar and Maut-

ner [AM15]. For this we recall the definition of the Fourier-Sato transform.

Let h be a complex Lie algebra. Consider the C×-action on h given by scaling.

Say that an object F ∈ Db
H(h, k) is conic if for each x ∈ h, and i ∈ Z, the

sheaf Hi(F)|C×·x is locally constant. Let Db
H,con(h, k) ⊂ Db

H(h,k) denote the full

subcategory of conic objects.

Define the H-stable subset P ⊂ h× h by:

P = {(x, y) ∈ h× h | Rκ(x, y) ≤ 0},

where Rκ(x, y) is the real part of the Killing form of x and y. Let π1, π2 : P → h

be the projections onto the first and second components.

Define the Fourier-Sato transform

Th := π2!π
∗
1[dim h] : Db

H,con(h,k) → Db
H,con(h, k)

This functor is an equivalence of categories with quasi-inverse T−1
h = π1∗π

!
2[−dim h].
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Remark 4.4.5. In this thesis we only consider a specific type of Fourier-Sato trans-

form (in the usual definition, h would be replaced with any real vector bundle).

For the more general definition see [KS90, Definition 3.7.8]. Note also that the

usual definition of the Fourier-Sato transform does not include a shift by dim h.

We list two important results about the Fourier-Sato transform.

(i) [KS90, Proposition 10.3.18] The functor Th is t-exact for the perverse t-

structure.

(ii) [KS90, Lemma 3.7.10] There are isomorphisms in Db
H,con(h, k):

Th(kh[dim h]) ≃ k{0},

Th(k{0}) ≃ kh[dim h].
(4.7)

The following proposition extends the latter result in the case that h = gld.

Proposition 4.4.6. For a weak composition, λ, of d, there are natural isomorphisms

in Db
G(g,k):

Tg(mλ!kg̃λ [dim g]) ≃ m̃λ!kÑλ
[dim Ñλ],

Tg(m̃λ!kÑλ
[dim Ñλ]) ≃ mλ!kg̃λ [dim g].

Proof. Mircović [Mir04, Lemma 4.2] shows that the Fourier-Sato transform func-

tor commutes with the parabolic induction and restriction functors. Hence:

Tg(mλ!kg̃λ [dim g]) ≃ Tg(indλ klλ [dim lλ])

≃ indλ(Tlλklλ [dim lλ])

≃ indλ k{0}

≃ m̃λ!kÑλ
[dim Ñλ]

The result follows.

Remark 4.4.7. For a direct proof of Proposition 4.4.6 that does not use the in-

duction functor one could use the methodology of [AHJR14, Lemma 2.2], which

proves Proposition 4.4.6 in the case λ = (1, . . . , 1).
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Achar and Mautner [AM15] define the geometric Ringel duality functor:

R := i∗Tgi![−d] : Db
G(N ,k) → Db

G(N ,k),

where i : N ↪→ g is the natural embedding. Note that any object in Db
G(g,k) that

is supported on N is conic, and so this definition makes sense. They show [AM15,

Theorem 4.2] that R is an equivalence of categories with quasi-inverse

R−1 := i!T−1
g i![d] : Db

G(N ,k) → Db
G(N ,k).

Lemma 4.4.8. For any weak composition, λ, of d, there are natural isomorphisms

in PG(N ,k):

(i) RΛλ ≃ Γλ,

(ii) R−1Λλ ≃ Sλ.

Proof. Consider the Cartesian square

g̃λ g

N̆λ N

i

mλ

ιλ

m̆λ

Statement (i) follows from the following sequence of isomorphisms

i∗Tgi!Λ
λ[−d] ≃ i∗mλ!kg̃λ [d

2 − d]

≃ m̆λ!ι
∗
λkg̃λ [d

2 − d]

≃ m̆λ!kN̆λ
[d2 − d]

= Γλ

where the first isomorphism follows from Proposition 4.4.6 and the second iso-

morphism is an application of proper base change. Statement (ii) follows from

the dual argument.

Lemma 4.4.9. The following hold:

(i) The projective objects of PervG(N ,k) are isomorphic to direct sums of direct

summands of objects of the form Γλ.
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(ii) The injective objects of PervG(N , k) are isomorphic to direct sums of direct

summands of objects of the form Sλ.

Proof. By Corollary 2.3.11, the category PervG(N , k) is finite and the projective

indecomposable objects in PervG(N , k) are in one-to-one correspondence with

the set, Λ(d), of partitions of d. It is already shown in Lemma 4.4.3 that the

objects Γλ are projective. To show Statement (i) it suffices to show that the

object
⊕

λ∈Λ(d) Γ
λ has (at least) |Λ(d)| many indecomposable direct summands

(up to isomorphism).

By Lemma 4.4.8, there is an isomorphism R−1(
⊕

λ∈Λ(d) Γ
λ) ≃

⊕
λ∈Λ(d) Λ

λ.

Since Λλ is supported on Oλ∨ , the object Λλ has an indecomposable direct sum-

mand, Tλ∨ , in which supp Tλ∨ ≃ Oλ∨ . The objects Pλ := R(Tλ∨) form the

required collection of indecomposable summands of
⊕

λ∈Λ(d) Γ
λ.

Statement (ii) holds by a similar argument.

For a partition λ of d, let hλ : Oλ ↪→ N denote the inclusion map. Define the

simple perverse sheaf

ICλ := hλ!∗kOλ
[dimOλ].

Let Tλ and Pλ := R(Tλ∨) be the indecomposable objects of PG(N , k) defined in

the proof of Lemma 4.4.9. Achar and Mautner [AM15, Theorem 6.1] show that

Pλ is a projective cover of ICλ
1.

By definition of the indecomposable objects Tλ, the perverse sheaf Λλ has a

decomposition into irreducible objects of the form

Λλ ≃ Tλ∨ ⊕
⊕
µ≤λ∨

T mλµ
µ

for some numbers mλµ ∈ N. By applying the geometric Ringel duality functor,

it follows that the perverse sheaf Γλ has a decomposition into indecomposables

objects

Γλ ≃ Pλ ⊕
⊕
µ≥λ

P⊕mλµ
µ (4.8)

for some numbers mλµ ∈ N.
1The proof of this fact does not rely on the equivalence PG(N , k) ≃ Pk

d.
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Remark 4.4.10. It follows from the equivalence PG(N ,k) ≃ Pk
d that PG(N ,k) is

a highest weight category. Achar and Mautner [AM15, Lemma 6.2] show that

the objects Tλ are the indecomposable partial tilting objects in PG(N ,k). In

particular, the functor R restricts to an equivalence between the full subcategory

of partial tilting objects in PG(N ,k) to the full subcategory of projective objects

in PG(N ,k). This is the motivation for the term geometric Ringel duality.

4.4.3 The functor Hom(Γn,d,−) : PG(N ,k) → Sk(n, d)-mod

In this section we prove Theorem 4.4.1, and show that the equivalence Hom(Γn,d,−) :

PG(N , k) → Sk(n, d)-mod maps the simple perverse sheaf ICλ to the simple

Sk(n, d)-module with highest weight λ (Proposition 4.4.12).

To prove Theorem 4.4.1 we need the following known result (see e.g. [CG97,

Theorem 8.6.7]) relating Borel-Moore homology with morphisms of perverse sheaves.

Proposition 4.4.11. Consider a Cartesian square of varieties:

M1 ×N M2 M1

M2 N

f2

f1

µ1

µ2

in which M2 is smooth. Write di := dimMi. Then

HBM
k (M1 ×N M2, k) ≃ HomDb(N)(µ1!kM1

[k], µ2∗kM2
[2d2]).

Moreover suppose that µ2 : M2 → N is proper, M1, M2 and M3 are smooth

varieties, and µ3 : M3 → N is a map of varieties. Write

Hk(X) := HBM
k (X,k)

for any variety X and k ∈ N. Write

(Mi[k],Mj [l]) := HomDb(N)(µ1!kMi
[k], µ2!kMj

[l]).

Then the following diagram commutes:

Hk(M1 ×N M2)⊗Hl(M2 ×N M3) (M1[k+l−2d2],M2[l])⊗ (M2[l],M3[2d3])

Hk+l−2d2(M1 ×N M3) (M1[k+l−2d2],M2[2d3])

∼

−∗−

∼

−◦−
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Proof. The first part of the lemma follows from the isomorphisms:

HomD(M1×NM2)(kM1×NM2
,DkM1×NM2

) ≃ HomD(M1×NM2)(f
∗
1kM1

, f !
2DkM2

)

≃ HomD(M2)(kM1
, f1∗f

!
2DkM2

)

≃ HomD(M2)(kM1
, µ!

1µ2∗DkM2
)

≃ HomD(M2)(kM1
, µ!

1µ2∗kM2
[2 dimM2])

≃ HomD(M2)(µ1!kM1
, µ2∗kM2

[2 dimM2])

Note in particular that the third isomorphism is due to proper base change and

the fourth isomorphism is due to the smoothness of M2.

The proof of the second part of the lemma involves more theory than we are

prepared to develop here. We refer to [CG97, Theorem 8.6.7] for a complete

proof.

Proof of Theorem 4.4.1. Lemma 4.4.9 shows that if n ≥ d then the perverse sheaf

Γn,d :=
⊕

λ∈Λ(n,d)

Γλ

is a projective generator of PG(N ,k). Since PG(N , k) is finite (see e.g. Corollary

2.3.11), to show Theorem 4.4.1 it suffices to define an algebra isomorphism

Sk(n, d)
op ≃ EndPG(N ,k)(Γn,d).

This isomorphism is defined by the following chain of algebra isomorphisms

Sk(n, d)
op ≃

⊕
λ,µ∈Λ(n,d)

HBM
dim Ñλ+dim Ñµ

(Ñλ ×N Ñµ, k)

≃
⊕

λ,µ∈Λ(n,d)

HomDb(N ,k)(mλ!kÑλ
[dim Ñλ],mµ!kÑµ

[dim Ñµ])

≃ EndPG(N ,k)(
⊕

λ∈Λ(n,d)

Λλ)

≃ EndPG(N ,k)(
⊕

λ∈Λ(n,d)

Γλ).
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Here the first isomorphism is the characteristic-free Ginzburg construction of

the Schur algebra (Theorem 4.3.6), the second isomorphism is due to Proposition

4.4.11, and the fourth isomorphism is given by the geometric Ringel duality functor

([AM15, Theorem 4.2] and Lemma 4.4.8).

Let Λ+(n, d) := {(λ1, . . . , λn) ∈ Λ(n, d) | λ1 ≥ . . . ≥ λn} be the set of dominant

weights in Λ(n, d). For λ ∈ Λ+(n, d), let Ln
λ be the simple Sk(n, d)-module with

highest weight λ.

Proposition 4.4.12. For λ ∈ Λ+(n, d), there are isomorphisms of Sk(n, d)-modules

HomPG(N ,k)(Γn,d, ICλ) ≃ Ln
λ, (4.9)

HomPG(N ,k)(Γn,d,Γ
λ) ≃ Γλkn, (4.10)

HomPG(N ,k)(Γn,d, S
λ) ≃ Sλkn. (4.11)

Proof. Equation (4.10) follows from the chain of isomorphisms:

HomPG(N ,k)(Γn,d,Γ
λ) ≃

⊕
µ∈Λ(n,d)

HomPG(N ,k)(Γ
µ,Γλ)

≃ Sk(n, d)1λ

≃ Γλkn.

Equation (4.11) follows from the dual argument.

By comparing the decompositions of Γλ and Γλkn into projective indecompos-

able objects (see Proposition 3.4.4 and Equation (4.8)), the functor HomPG(N ,k)(Γn,d,−)

sends the projective cover of ICλ to the projective cover of Ln
λ. Equation (4.9)

follows immediately.

4.5 Highest weight structure on PG(N ,k)

In this section we describe the highest weight structure on PG(N ,k), and use this

structure to show that HomPG(N ,k)(Γn,d,Λ
λ) ≃ Λλkn for all λ ∈ Λ(n, d), when

n ≥ d (Proposition 4.5.4).
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It is well known that Schur algebras are quasihereditary [Don86, (2.2h)]. More

precisely, the category Pk
n,d is a highest weight category with respect to the dom-

inance order, ≤, on Λ+(n, d). It follows from Theorem 4.4.1 that PG(N , k) is a

highest weight category. The following proposition describes the standard and

costandard objects in PG(N ,k).

Proposition 4.5.1. The category PG(N , k) is a highest weight category with respect

to the poset Λ(d) of partitions of d. The standard objects are defined

∆(λ) := pH0(hλ!kOλ
[dimOλ])

and costandard objects are defined

∇(λ) := pH0(hλ∗kOλ
[dimOλ]),

where hλ : Oλ ↪→ N is the inclusion map.

Proof. The category A := PG(N , k) has a stratification by Λ(d), given by defining

Serre subcategories AΛ′ := PG(
⋃

λ∈Λ′ Oλ, k), for each closed-downwards subset

Λ′ ⊂ Λ (see Example 2.1.8). The perverse sheaves ∆(λ) and∇(λ) are the standard

and costandard objects of PG(N , k) defined by this stratification (see Section 2.4).

If n ≥ d then B := Pk
n,d is a highest weight category with respect to Λ(d)

[Don86, (2.2h)]. By Theorem 2.5.2, B has a homological stratification by Λ(d)

defined by setting, for each closed-downwards subset Λ′ ⊂ Λ, the category BΛ′ to

be the Serre subcategory of B generated by simple objects Ln
λ in which λ ∈ Λ′.

By Proposition 4.4.12, the functor HomPG(N ,k)(Γn,d,−) restricts to an equiva-

lence between AΛ′ and BΛ′ for each closed-downwards Λ′ ⊂ Λ. The result follows

immediately.

Recall that an object in a highest weight category is called partial tilting if

it has both a filtration by standard objects and a filtration by costandard ob-

jects. Ringel [Rin91, Proposition 2] shows that if A is a highest weight category

with simple objects Lλ indexed by a poset Λ, then for every λ ∈ Λ there is a

unique (up to isomorphism) indecomposable partial tilting object, Tλ, satisfying

the conditions:
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(i) All composition factors, Lµ, of Tλ satisfy µ ≤ λ.

(ii) The simple module Lλ is a composition factor of Tλ with multiplicity 1.

Moreover all indecomposable partial tilting objects in A are of this form. We call

Tλ the indecomposable partial tilting object associated to λ.

The following proposition is due to [Don93, Lemma 3.4].

Proposition 4.5.2. The partial tilting objects of Pk
n,d are isomorphic to direct sums

of direct summands of modules of the form Λλkn.

The partial tilting objects in PG(N ,k) are characterized by the following

proposition. A different proof of this result is given in [AM15, Lemma 6.2].

Proposition 4.5.3. The partial tilting objects of PG(N , k) are isomorphic to direct

sums of direct summands of objects of the form Λλ.

Proof. The induction functor ˜indλ : PLλ
({0},k) → PG(Oλ∨ , k) has exact left and

right adjoints. Since k{0} is projective and injective in PLλ
({0}, k), the perverse

sheaf Λλ := indλ k{0} is projective and injective in PG(Oλ∨ , k). In particular, Λλ

has a filtration by standard objects and a filtration by costandard objects.

It remains to check that there are |Λ(d)|-many distinct indecomposable sum-

mands of
⊕

λ Λ
λ (up to isomorphism). This is shown in the proof of Lemma

4.4.9.

It follows from Proposition 4.5.3 and the proof of Lemma 4.4.9 that, for any

λ ∈ Λ(d), the perverse sheaf Tλ (as defined in the proof of Lemma 4.4.9) is the

indecomposable partial tilting object in PG(N ,k) associated to λ.

We next summarise the theory of Ringel duality in highest weight categories.

Say that an object T in a finite abelian category A is a generalized tilting

object if:

(i) T has finite projective dimension.

(ii) ExtiA(T, T ) = 0 for all i > 0.
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(iii) For any projective object P ∈ A, there is an exact sequence 0 → P → T1 →
· · · → Tn → 0, where the Ti are objects in the category, addT , of finite

direct sums of direct summands of T .

Generalized tilting objects were first studied in [Miy86]. Rickard [Ric89, Theorem

6.4] shows that if T is a generalized tilting object in A then the functor

RHomA(T,−) : DbA → Db End(T )op-mod

is an equivalence of categories that restricts to an equivalence between addT and

the category of projective objects in End(T )op-mod.

If an object, T , in a highest weight category A contains each indecomposable

partial tilting object as a direct summand, then T is a generalized tilting object

in A [Rin91, Section 5]. Such objects are called characteristic tilting objects.

If T is a characteristic tilting object in a highest weight category A-mod, then

the equivalence

RHomA(T,−) : DbA-mod → Db End(T )op-mod

is called a Ringel duality functor, and the algebra End(T )op is called a Ringel

dual of A. If A-mod is a highest weight category with respect to a poset Λ, then

End(T )op-mod is a highest weight category with respect to the opposite poset Λop

[Rin91, Theorem 6]. Moreover, for λ ∈ Λ and corresponding element λ′ ∈ Λop,

the Ringel duality functor maps the indecomposable partial tilting object Tλ to

the projective indecomposable Pλ′ [Rin91, Lemma 7].

Donkin [Don93, Proposition 3.7] shows that if n ≥ d, then there is an algebra

isomorphism

Sk(n, d)
op ≃ EndPk

n,d
(
⊕

λ∈Λ(n,d)

Λλkn). (4.12)

By Proposition 4.5.2, the object
⊕

λ∈Λ(n,d) Λ
λkn is a characteristic tilting object.

In particular, if n ≥ d then there is an equivalence of categories

Rn,d := RHomPk
n,d

(
⊕

λ∈Λ(n,d)

Λλkn,−) : DbPk
n,d → DbPk

n,d
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that restricts to an equivalence between the full subcategory of partial tilting

objects in Pk
n,d and the full subcategory of projective objects in Pk

n,d. Moreover,

this functor maps the indecomposable partial tilting object Tλ∨ to the projective

cover, Pλ, of L
n
λ.

We remark that by the isomorphism in (4.12), Rn,d(Λ
λkn) ≃ Γλkn.

Proposition 4.5.4. Let n ≥ d. For any λ ∈ Λ(n, d), there are isomorphisms of

Sk(n, d)-modules

HomPG(N ,k)(Γn,d,Λ
λ) ≃ Λλkn.

Proof. Let TiltG(N ,k) (respectively ProjG(N ,k)) be the full subcategory of PervG(N ,k)
consisting of partial tilting (respectively projective) objects. Let Tiltkn,d (respec-

tively Projkn,d) be the full subcategory of Pk
n,d consisting of partial tilting (respec-

tively projective) objects.

Hence the result follows from the commutativity of the following diagram of

equivalences of categories.

TiltG(N ,k) Tiltkn,d

ProjG(N , k) Projkn,d

R

Hom(Γn,d,−)

Hom(Γn,d,−)

Rn,d

This diagram of functors commutes since both paths of functors map the inde-

composable object Tλ∨ to the projective cover, Pλ, of L
n
λ.

For the remainder of this section we discuss a possible generalization of The-

orem 4.4.1 that arises naturally from this discussion.

Let H be a connected complex reductive Lie group, and let X be a H-variety

with finitely many orbits Oλ, for λ in an indexing set Λ. Suppose also that for each

λ ∈ Λ and x ∈ Oλ, the stabilizer of x has finitely many connected components.

By Corollary 2.3.13, for any field k, PH(X,k) is equivalent to a category

AX -mod, for some finite dimensional k-algebra AX . The proof of Corollary 2.3.13

does not give an explicit construction of the algebra AX - indeed the abstract

nature of this proof suggests that a construction of AX is difficult in general.
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The proof of Theorem 4.4.1 suggests an approach to a weaker version of this

problem: Can Borel-Moore homology be used to construct an algebra HX in which

DbPH(X,k) ≃ DbHX-mod?

The following makes this question more precise.

Open Question 4.5.5. Let H be a connected complex reductive Lie group, and

let X be a H-variety with finitely many orbits Oλ, for λ in an indexing set Λ.

Suppose also that for each λ ∈ Λ and x ∈ Oλ, the stabilizer of x has finitely many

connected components.

Suppose moreover that each orbit closureOλ has a properH-equivariant semis-

mall resolution of singularities

mλ : X̃λ → Oλ.

Define the convolution algebra

HX :=
⊕
λ,µ∈Λ

HBM
dim X̃λ+dim X̃µ(X̃

λ ×X X̃µ, k).

Define the perverse sheaf TX =
⊕

λ∈Λmλ
! kX̃λ [dim X̃λ] ∈ PervH(X,k).

Find necessary and sufficient conditions in which TX is a generalized tilting

object in PH(X,k) i.e. find necessary and sufficient conditions in which

RHomPH(X,k)(TX ,−) : Db
H(X,k) → DbHop

X -mod

is an equivalence of categories.

An example of a GLn(C)-variety satisfying the conditions of Open Question

4.5.5 is the enhanced nilpotent cone defined in [AH08].

4.6 Appendix: Towards a geometric version of the homoge-

neous external product

A consequence of the equivalence PG(N ,k) ≃ Pk
d is that there is a functor

real : DbPk
d → Db

G(N ,k)
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that restricts to an equivalence of abelian categories real : Pk
d → PG(N , k) (see e.g.

[Ach21, Theorem A.7.16]). Such a functor is usually called a realization functor.

It would be interesting to have an answer to the following question.

Open Question 4.6.1. Define a product

− ⋄ − : Db
G(N ,k)×Db

G(N , k) → Db
G(N , k)

in which the following diagram commutes

DbPk
d ×DbPk

d Db
G(N ,k)×Db

G(N ,k)

DbPk
d Db

G(N ,k)

real× real

real

−⊗L− −⋄−

Suppose that such a product ⋄ exists. Then the following two properties of ⋄
follow from Proposition 4.4.12:

• The unit of ⋄ is kN [dimN ]. That is,

kN [dimN ] ⋄ F ≃ F

for any F ∈ Db
G(N ,k). Indeed, this holds since Γdk∞ is the unit of ⊗L.

• For all compositions λ, µ of d, there are isomorphisms

m̆λ!kN̆λ
[dimN ] ⋄ m̆µ!kN̆µ

[dimN ] ≃
⊕
ν∈Aλ

µ

m̆ν!kN̆ν
[dimN ]

Indeed, this follows from Lemma 3.6.2.

Krause [Kra13, Proposition 5.4] shows that Sd⊗L− : DbRepΓk
d → DbRepΓk

d

is a Serre functor in the sense of [BK89]. We expect the same to be true of

DN [dimN ] ⋄ − : Db
G(N ,k) → Db

G(N , k) since Hom(Γn,d,DN [dimN ]) ≃ Sdkn.
That is, we expect that for F ,G ∈ Db

G(N , k), there are natural isomorphisms

Hom(F ,G)∗ ≃ Hom(G,DN [dimN ] ⋄ F).

Remark 4.6.2. For discussions of the useful properties and applications of Serre

functors see e.g. [BO01] and [MS08].
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Krause [Kra13, Theorem 5.1] describes Ringel duality of the Schur algebra

using the internal product on strict polynomial functors. More precisely, [Kra13,

Theorem 5.1] says that, for n ≥ d, the following diagram commutes:

DbRepΓk
d DbPk

d

DbRepΓk
d DbPk

d

∼

∼

Λd⊗L− (
⊕

λ∈Λ(n,d) Λ
λk∞)⊗L−

We expect that if the product ⋄ exists then it should be related to the inverse

geometric Ringel duality functor R−1 in the same way that the internal product

on strict polynomial functors is related to the functor
⊕

λ∈Λ(n,d) Λ
λk∞⊗L−. More

precisely, we expect that there are natural isomorphisms

k{0} ⋄ F ≃ i!T−1
g i∗F [d]

for all F ∈ Db
G(N , k).

Because of these properties, we believe that such a product ⋄ might prove a

useful tool in the study of PG(N , k) and may invite a novel approach to computing

the Kronecker coefficients.
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Acad. Sci. Canada 20:22-28, 1998 40

[AH08] Pramod N. Achar, Anthony Henderson. Orbit closures in the enhanced

nilpotent cone. Adv. Math. 219(1):27-62, 2008 117

[AHJR14] Pramod N. Achar, Anthony Henderson, Daniel Juteau, Simon Riche.

Weyl group actions on the Springer sheaf. Proc. Lond. Math. Soc.

108(6):1501-1528, 2014 107

[AHJR16] Pramod N. Achar, Anthony Henderson, Daniel Juteau, Simon Riche.

Modular generalized Springer correspondence I: the general linear

group. J. Eur. Math. Soc. 18:1405-1436, 2016 105

[AHR15] Pramod N. Achar, Anthony Henderson, Simon Riche. Geometric Sa-

take, Springer correspondence, and small representations II. Represent.

Theory 19:94-166, 2015 105

120



[AM15] Pramod N. Achar, Carl Mautner. Sheaves on nilpotent cones, Fourier

transform, and a geometric Ringel duality. Mosc. Math. J. 15(3):407-

423, 2015 11, 87, 103, 105, 106, 108, 109, 110, 112, 114

[AR17] Cosima Aquilino, Rebecca Reischuk. The monoidal structure on strict

polynomial functors. J. Algebra 485:213-229, 2017 2, 49, 50, 75

[BBD82] Alexander Beilinson, Joseph Bernstein, Pierre Deligne. Faisceaux per-
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Algebra Geom. 50:179-193, 2009 58

[CG97] Neil Chriss, Victor Ginzburg. Representation theory and complex ge-

ometry. Birkhäuser Boston Inc., Boston MA, 1997 i, 11, 48, 50, 54, 87,

94, 99, 101, 110, 111

[CKM14] Sabin Cautis, Joel Kamnitzer, Scott Morrison. Webs and quantum skew

Howe duality. Mathematische Annalen 360:351-390, 2014 50, 80, 84

[CM93] David H. Collingwood, William M. McGovern. Nilpotent orbits in

semisimple Lie algebras, Van Nostrand Reinhold Co., New York, 1993

90

[CL74] Roger W. Carter, George Lusztig. On the modular representations of

the general linear and symmetric groups. Math Z. 136:193-242, 1974 1

[CPS88] Edward Cline, Brian J. Parshall, Leonard L. Scott. Finite-dimensional

algebras and highest weight categories. J. Reine Angew Math 391:85-99,

1988 4, 39, 41

[CPS96] Edward Cline, Brian J. Parshall, Leonard L. Scott. Stratifying endo-

morphism algebras. Mem. Amer. Math. Soc. 124:1-119, 1996 4, 39

[CW22] Alessio Cipriani, Jon Woolf. When are there enough projective perverse

sheaves? Glasgow Mathematical Journal 64(1):185-196, 2022 i, 6, 14,

36

[CZ19] Kevin Coulembier, Ruibin Zhang. Borelic pairs for stratified algebras.

Adv. Math. 345:53-115, 2019 39

[Day70] Brian Day. Construction of biclosed categories. Ph.D. thesis, University

of New South Wales, 1970 74

122



[DG02] Stephen Doty, Anthony Giaquinto. Presenting Schur Algebras. Int.

Matg. Res. Not. 36:1907-1944, 2002 50, 57, 58

[DiG95] Persi Diaconis, Anil Gangolli. Rectangular arrays with fixed margins,

in: Discrete Probability and Algorithms, Springer-Verlag, Berlin/New

York, 15-41, 1995 64

[DGS09] Stephen Doty, Anthony Giaquinto, John Sullivan. On the defining rela-

tions for generalized q-Schur algebras. Adv. in Math. 221:955-982, 2009

57

[Dla96] V. Dlab Quasi-hereditary algebras revisited An. Stiin. Univ. Ovidius

Constantza 4:43-54, 1996 39

[Don86] Stephen Donkin. On Schur algebras and related algebras I. J. Algebra

104:310-328, 1986 49, 50, 54, 113

[Don93] Stephen Donkin. On tilting modules for algebraic groups. Mathematis-

che Zeitschrift 212:39-60, 1993 61, 85, 114, 115

[Dot03] Stephen Doty. Presenting generalized q-Schur algebras. Representation

Theory 7:196-213 (electronic), 2003. 49, 50, 53, 54

[DR09] James M. Douglass, Gerhand Röhrle. The Steinberg variety and rep-
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