Stratifications of Abelian Categories

Giulian Wiggins

The University of Sydney

Australian Category Seminar, September 2022

Recollements of Abelian Categories

- Definitions
- Properties

Stratifications of Abelian Categories

- Definitions
- Stratifications of Module Categories
- Highest Weight Categories

Stratification of a topological space

A stratification of a topological space X consists of a finite collection

 $\{X_{\lambda}\}_{\lambda\in\Lambda}$

of disjoint, connected, locally closed subspaces (called *strata*), in which

•
$$X = \bigcup_{\lambda \in \Lambda} X_{\lambda}$$

• Each $\overline{X_{\lambda}}$ is a union of strata.

NB. Associated to such a stratification is the poset (Λ , \leq) defined

$$\mu \leq \lambda$$
 if $X_{\mu} \subset \overline{X_{\lambda}}$.

- Construct an analogue of this construction for abelian categories i.e define a stratification of an abelian category by a poset (Λ, ≤).
- Need: Analogue of "attaching" two abelian categories. This will be achieved by recollements.

History

- 1982 Beilinson, Bernstein, Deligne: Faisceaux pervers
 - This paper defines recollements of triangulated categories.
 - Recollements of abelian categories are an abelian category analogue of this definition.
- 1988 Cline, Parshall, Scott: *Finite dimensional categories and highest weight categories*
- 1996 Cline, Parshall, Scott: Stratifying endomorphism algebras
- 1998 Agoston, Dlab, Lukacs: Stratified algebras
- 2018 Brundan, Stroppel: Semi-infinite highest weight categories

Abelian categories

Let:

- \Bbbk be a field.
- \mathcal{A} be a \Bbbk -linear abelian category.

Recall:

- An object $L \in \mathcal{A}$ is **simple** if *L* has no subobjects.
- Let C be a class of objects in A (closed under isomorphisms). A finite filtration of an object X ∈ A by objects in C consists of a chain of monomorphisms

$$0 = X_0 \hookrightarrow X_1 \hookrightarrow \cdots \hookrightarrow X_n = X$$

in which $X_i/X_{i-1} \in C$ for each *i*.

• A filtration of X by objects in C consists of a (possibly infinite) chain of monomorphisms

$$0 = X_0 \hookrightarrow X_1 \hookrightarrow \cdots \hookrightarrow X_n \hookrightarrow \cdots$$

in which $X = \operatorname{colim} X_i$ and each $X_i/X_{i-1} \in C$.

Playtime

Desiderata: What features would we want the "attaching" of two abelian categories to satisfy?

Let A_Z and A_U be abelian categories. We want to study abelian categories A in which:

• There are fully faithful functors:

$$\mathcal{A}_Z \stackrel{i_*}{\longleftrightarrow} \mathcal{A} \stackrel{j_{!*}}{\longleftrightarrow} \mathcal{A}_U$$

- The essential image of *i*_{*} does not intersect the essential image of *j*_{!*}.
- Every object $X \in A$ has a filtration by objects in im $i_* \cup \text{im } j_{!*}$.
- The essential image of i_* is a Serre subcategory of A.

Playtime

Slightly Stronger Desiderata

Let A_Z and A_U be abelian categories. We want to study abelian categories A in which:

• There are fully faithful functors:

$$\mathcal{A}_Z \stackrel{i_*}{\longrightarrow} \mathcal{A} \stackrel{j_{!*}}{\longleftrightarrow} \mathcal{A}_U$$

- Every simple object $L \in A$ is uniquely either of the form i_*L' (for $L' \in A_Z$) or $j_{!*}L'$ (for $L' \in A_U$).
- The essential image of i_* is a Serre subcategory of A.

The case $\mathcal{A}_Z \simeq \mathcal{A}_U \simeq \Bbbk$ -mod

What categories \mathcal{A} satisfy:

• There are fully faithful functors

$$\Bbbk\operatorname{-mod} \stackrel{i_*}{\longleftrightarrow} \mathcal{A} \stackrel{j_{!*}}{\longleftrightarrow} \Bbbk\operatorname{-mod}$$

with disjoint essential images.

• Every object $X \in A$ has a filtration by objects in im $i_* \cup \text{im } j_{!*}$.

Consider the direct sum category $\Bbbk\operatorname{-mod}\oplus\Bbbk\operatorname{-mod}$:

There are functors:

 $i_*: \Bbbk\operatorname{-mod} \to \Bbbk\operatorname{-mod} \oplus \Bbbk\operatorname{-mod}; \qquad V \mapsto (V, 0)$ $j_{!*}: \Bbbk\operatorname{-mod} \to \Bbbk\operatorname{-mod} \oplus \Bbbk\operatorname{-mod}; \qquad V \mapsto (0, V)$

- The simple objects of k-mod ⊕ k-mod are (k, 0) and (0, k).
- Every object $(V, W) \in \Bbbk$ -mod $\oplus \Bbbk$ -mod has a filtration

 $(0,0) \hookrightarrow (V,0) \hookrightarrow (V,W)$

$(\bullet \rightarrow \bullet)$ -mod

Consider the category, $(\bullet \rightarrow \bullet)$ -mod, of functors $\{x \rightarrow y\} \rightarrow \Bbbk$ -mod. Alternatively,

- Objects: Linear maps $V \xrightarrow{f} W$
- Morphisms: Commutative diagrams

$$V \xrightarrow{\varphi_V} V'$$

$$f \downarrow \qquad \qquad \downarrow^{f'}$$

$$W \xrightarrow{\varphi_W} W'$$

$(\bullet \rightarrow \bullet)$ -mod

There are functors:

$$\begin{split} i_*: \&\operatorname{-mod} & o (ullet o ullet) \operatorname{-mod}; \qquad V \mapsto (V o ullet) \ j_{!*}: \&\operatorname{-mod} & o (ullet o ullet) \operatorname{-mod}; \qquad V \mapsto (ullet o V) \end{split}$$

- The simple objects of (• \rightarrow •)-mod are ($\Bbbk \rightarrow 0$) and (0 $\rightarrow \Bbbk$).
- Every object $(V \xrightarrow{f} W) \in (\bullet \to \bullet)$ -mod has a filtration

Definition: Recollement of Abelian Categories

Recollement of Abelian Categories

A recollement of ${\mathcal A}$ consists of categories and functors:

satisfying the conditions:

- (R1) $(i^*, i, i^!)$ and $(j_!, j, j_*)$ are adjoint triples.
- (R2) The functors $i, j_{!}, j_{*}$ are fully-faithful.
- (R3) The functors satisfy $j \circ i = 0$ (and so by adjunction $i^* j_! = 0 = i^! j_*$).
- (R4) For any object $X \in A$, if j(X) = 0 then X is in the essential image of *i*.

Direct sum of categories

$$A \xrightarrow{i^{*}}{i} \mathcal{A} \oplus \mathcal{B} \xrightarrow{j_{1}}{j} \mathcal{B}$$

$$\xleftarrow{i}{i^{!}} \mathcal{A} \oplus \mathcal{B} \xleftarrow{j}{i^{*}} \mathcal{B}$$

where *i* and $j_{!} = j_{*}$ are the inclusion functors, and $i^{*} = i^{!}$ and *j* are projection functors.

$\bullet \rightarrow \bullet$ Quiver Representations

where:

 $\begin{array}{ll} i: \Bbbk \operatorname{-mod} \to A_2 \operatorname{-mod}; & V \mapsto (V \to 0) \\ j: A_2 \operatorname{-mod} \to \Bbbk \operatorname{-mod}; & (V \to W) \mapsto W \\ i^*: A_2 \operatorname{-mod} \to \Bbbk \operatorname{-mod}; & (V \to W) \mapsto V \\ i^!: A_2 \operatorname{-mod} \to \Bbbk \operatorname{-mod}; & (V \stackrel{f}{\to} W) \mapsto \ker f \\ j_!: \Bbbk \operatorname{-mod} \to A_2 \operatorname{-mod}; & V \mapsto (0 \to V) \\ j_*: \Bbbk \operatorname{-mod} \to A_2 \operatorname{-mod}; & V \mapsto (V \to V) \end{array}$

$\bullet \rightarrow \bullet$ Quiver Representations (2)

where:

 $\begin{array}{ll} i: \Bbbk \operatorname{-mod} \to A_2 \operatorname{-mod}; & V \mapsto (0 \to V) \\ j: A_2 \operatorname{-mod} \to \Bbbk \operatorname{-mod}; & (V \to W) \mapsto V \\ i^*: A_2 \operatorname{-mod} \to \Bbbk \operatorname{-mod}; & (V \stackrel{f}{\to} W) \mapsto \operatorname{cok} f \\ i^!: A_2 \operatorname{-mod} \to \Bbbk \operatorname{-mod}; & (V \to W) \mapsto W \\ j_!: \Bbbk \operatorname{-mod} \to A_2 \operatorname{-mod}; & V \mapsto (V \to V) \\ j_*: \Bbbk \operatorname{-mod} \to A_2 \operatorname{-mod}; & V \mapsto (V \to 0) \end{array}$

$\bullet \rightarrow \bullet \rightarrow \bullet$ Quiver Representations

$$(\bullet \to \bullet) \operatorname{-mod} \xrightarrow{\stackrel{i^*}{\underset{i^{|}}{\longleftarrow}}} (\bullet \to \bullet \to \bullet) \operatorname{-mod} \xrightarrow{\stackrel{j_{|}}{\underset{j^{|}}{\longleftarrow}}} \underbrace{\stackrel{j_{|}}{\underset{j_{|}}{\longleftarrow}} \Bbbk \operatorname{-mod}$$

where:

$$egin{aligned} & i: \mathcal{A}_2\operatorname{-mod} o \mathcal{A}_3\operatorname{-mod}; & & (U o V) \mapsto (U o V o 0) \ & j: \mathcal{A}_3\operatorname{-mod} o \Bbbk\operatorname{-mod}; & & (U o V o W) \mapsto W \end{aligned}$$

Λ-Quiver Representations

- Let ∧ be a poset, thought of as a quiver.
- Let $\lambda \in \Lambda$ be maximal.

There is a recollement

Constructible Sheaves

Properties of Recollements

Consider a recollement:

- The essential image of *i* is a Serre subcategory of A.
- The adjunction maps

$$i^* \circ i \to \mathsf{Id} \to i^! \circ i$$

 $j \circ j_* \to \mathsf{Id} \to j \circ j_!$

are isomorphisms.

(This is equivalent to $i, j_{!}, j_{*}$ being fully-faithful)

Properties of Recollements

Consider a recollement:

For object $X \in A$:

- $i \circ i^*(X)$ is the largest quotient of A in the essential image of i.
- $i \circ i^!(X)$ is the largest subobject of A in the essential image of *i*.

Theorem

Let \mathcal{A}^U be the full subcategory of \mathcal{A} whose objects have no quotients or subobjects in the essential image of *i*. The functor *j* restricts to an equivalence of categories

$$j: \mathcal{A}^U \to \mathcal{A}_U$$

Examples

$(\bullet \rightarrow \bullet)$ -mod

Consider the recollement:

$$\Bbbk\operatorname{-mod} \xrightarrow{i^{*}}_{\stackrel{i^{*}}{\longleftarrow}} (\bullet \to \bullet)\operatorname{-mod} \xrightarrow{j_{1}}_{\stackrel{j_{1}}{\longleftarrow}} \Bbbk\operatorname{-mod}$$

where:

$$i: \Bbbk\operatorname{-mod} \to A_2\operatorname{-mod}; \qquad V \mapsto (V \to 0)$$

 $j: A_2\operatorname{-mod} \to \Bbbk\operatorname{-mod}; \qquad (V \to W) \mapsto W$

Then $\mathcal{A}^U \simeq \{0 \to W\}$. The functor $j : \mathcal{A}^U \to \Bbbk$ -mod has quasi-inverse j_i .

Examples

$(\bullet \rightarrow \bullet)$ -mod

Consider the recollement:

$$\mathbb{k}\text{-mod} \xrightarrow{i^{*}}_{\stackrel{i^{*}}{\longleftarrow}} (\bullet \to \bullet)\text{-mod} \xrightarrow{j_{1}}_{\stackrel{j_{1}}{\longleftarrow}} \mathbb{k}\text{-mod}$$

where:

$$egin{aligned} & i: \& \operatorname{-mod} o A_2\operatorname{-mod}; & V \mapsto (0 o V) \ & j: A_2\operatorname{-mod} o \& \operatorname{-mod}; & (V o W) \mapsto V \end{aligned}$$

Then $\mathcal{A}^U \simeq \{ V \to 0 \}$. The functor $j : \mathcal{A}^U \to \Bbbk$ -mod has quasi-inverse j_* .

Consider a recollement:

Question

What is the quasi-inverse of the equivalence $j : \mathcal{A}^U \to \mathcal{A}_U$?

Intermediate Extension Functor

Consider a recollement:

Consider the isomorphisms:

$$\operatorname{\mathsf{Hom}}_{\mathcal{A}}(j_!X,j_*X)\simeq\operatorname{\mathsf{Hom}}_{\mathcal{A}_U}(X,j\circ j_*X)\simeq\operatorname{\mathsf{Hom}}_{\mathcal{A}_U}(X,X).$$

Let $\overline{1_X} : j_! X \to j_* X$ be the morphism corresponding to $1_X : X \to X$.

Intermediate Extension Functor

Define the functor $j_{!*} : \mathcal{A}_U \to \mathcal{A}$:

$$j_{!*}X := \operatorname{im}(\overline{1_X} : j_!X \to j_*X) \in \mathcal{A}.$$

The image of $j_{!*}$ is in \mathcal{A}^U and $j_{!*} : \mathcal{A}_U \to \mathcal{A}^U$ is quasi-inverse to $j : \mathcal{A}^U \to \mathcal{A}_U$.

Examples: Intermediate Extension Functor

Consider the recollement:

where:

$$egin{aligned} & i: \& - \mathrm{mod}
ightarrow A_2 - \mathrm{mod}; & V \mapsto (V
ightarrow 0) \ & j: A_2 - \mathrm{mod}
ightarrow \& - \mathrm{mod}; & (V
ightarrow W) \mapsto W \ & j_!: \& - \mathrm{mod}
ightarrow A_2 - \mathrm{mod}; & V \mapsto (0
ightarrow V) \ & j_*: \& - \mathrm{mod}
ightarrow A_2 - \mathrm{mod}; & V \mapsto (V
ightarrow V) \end{aligned}$$

Then

• $\overline{\mathbf{1}_V}$: $j_! V \to j_* V$ is the natural inclusion.

•
$$j_{!*}: V \mapsto (0 \rightarrow V)$$
 i.e. $j_{!*} = j_{!}$.

Giulian Wiggins (USYD)

Examples: Intermediate Extension Functor

Consider the recollement:

where:

$$egin{aligned} & i: \& - \mathrm{mod}
ightarrow A_2 - \mathrm{mod}; & W \mapsto (0
ightarrow W) \ & j: A_2 - \mathrm{mod}
ightarrow \& - \mathrm{mod}; & (V
ightarrow W) \mapsto V \ & j_!: \& - \mathrm{mod}
ightarrow A_2 - \mathrm{mod}; & V \mapsto (V
ightarrow V) \ & j_*: \& - \mathrm{mod}
ightarrow A_2 - \mathrm{mod}; & V \mapsto (V
ightarrow 0) \end{aligned}$$

Then

• $\overline{\mathbf{1}_V} : j_! V \to j_* V$ is the natural surjection.

•
$$j_{!*}: V \mapsto (V \rightarrow 0)$$
 i.e. $j_{!*} = j_{*}$.

Giulian Wiggins (USYD)

Theorem

Consider a recollement:

Every simple object in $\ensuremath{\mathcal{A}}$ is either of the form

• i(L) for a unique simple object $L \in A_Z$,

or

• $j_{!*}(L)$ for a unique simple object $L \in A_U$.

Desiderata

Let A_Z and A_U be abelian categories. We want to study abelian categories A in which:

• There are fully faithful functors:

$$\mathcal{A}_Z \stackrel{i_*}{\longrightarrow} \mathcal{A} \stackrel{j_{!*}}{\longleftrightarrow} \mathcal{A}_U$$

- Every simple object $L \in A$ is uniquely either of the form i_*L' (for $L' \in A_Z$) or $j_{!*}L'$ (for $L' \in A_U$).
- The essential image of i_* is a Serre subcategory of A.

Definition: Stratification of Abelian Categories

Stratification of Abelian Categories

A stratification of A by a poset Λ consists of:

- Abelian categories A_{λ} for each $\lambda \in \Lambda$ (called *strata categories*).
- Serre subcategories A_{Λ'} ⊂ A for each downwards-closed subposet of Λ' ⊂ Λ.

satisfying conditions:

(S1)
$$\mathcal{A}_{\emptyset} = 0, \, \mathcal{A}_{\Lambda} = \mathcal{A}, \, \text{and} \, \Lambda' \subset \Lambda'' \text{ implies } \mathcal{A}_{\Lambda'} \subset \mathcal{A}_{\Lambda''}.$$

(S2) For each λ ∈ Λ and downwards-closed subset Λ' ⊂ Λ in which λ ∈ Λ' is maximal, the embedding i : A_{Λ'\{λ}} → A_{Λ'} fits into a recollement

Definition: Stratification of Abelian categories

Stratification by singleton poset: {1}

This is the data of an autoequivalence $j : A \to A$.

Stratification by poset: $1 \le 2$

$$\mathcal{A}_1 \simeq \mathcal{A}_{\{1\}} \stackrel{\xleftarrow{i^*}}{\xleftarrow{i}} \mathcal{A} = \mathcal{A}_{\{1,2\}} \stackrel{\xleftarrow{j_1}}{\xleftarrow{j}} \mathcal{A}_2$$

Definition: Stratification of Abelian Categories

Stratification by poset: $1 \le 2 \le 3$

Definition: Stratification of Abelian Categories

Stratification by poset: $2 \ge 1 \le 3$

Classification of Simple Objects

Let \mathcal{A} have a stratification by a poset Λ .

• For $\lambda \in \Lambda$, define the functors

$$j_*^\lambda, j_!^\lambda, j_!_* : \mathcal{A}_\lambda o \mathcal{A}_{\{\mu \in \Lambda \mid \mu \leq \lambda\}} \hookrightarrow \mathcal{A}$$

For each simple object *L* ∈ *A*, there is a unique λ ∈ Λ and unique simple object *L*_λ ∈ *A*_λ in which *L* = *j*^λ_{!*}*L*_λ.

Preorder on simple objects

Let $\{L(b)\}_{b\in B}$ be the set of simple objects in \mathcal{A} (up to isomorphism). There is a preorder \leq on B defined:

• If $L(b_1) = j_{!*}^{\mu} L_{\mu}(b_1)$ and $L(b_2) = j_{!*}^{\lambda} L_{\lambda}(b_2)$, then

$$b_1 \lesssim b_2$$
 if $\mu \leq \lambda$.

Theorem (original - see my thesis)

A k-linear abelian category with a stratification is equivalent to a category of finite dimensional modules of a finite dimensional k-algebra if and only if the same is true for all strata categories.

Proof Sketch

 For each simple object L(b) ∈ A construct a projective cover P(b) → L(b).

• Then
$$\mathcal{A} \simeq \operatorname{End}(\bigoplus_{b \in B} P(b))^{op}$$
-mod.

Example: Stratifications with enough projectives

$(\bullet \rightarrow \bullet)$ -mod

Simple objects:	$L_1 = 0 \rightarrow \Bbbk$ and $L_2 = \Bbbk \rightarrow 0$
-----------------	---

 $\textit{Projective indecomposables:} \quad P_1 = 0 \rightarrow \Bbbk \text{ and } P_2 = \Bbbk \rightarrow \Bbbk$

Injective indecomposables: $I_1 = \mathbb{k} \to \mathbb{k}$ and $I_2 = \mathbb{k} \to 0$

Standard and Costandard Objects

How to construct the projective cover $P(b) \rightarrow L(b)$

- Let $L(b) = j_{!*}^{\lambda} L_{\lambda}(b)$.
- Let $P_{\lambda}(b) \twoheadrightarrow L_{\lambda}(b)$ be the projective cover in \mathcal{A}_{λ} .
- Let Δ(b) = j₁^λP_λ(b).
 Note that Δ(b) is indecomposable and Δ(b) → L(b) but Δ(b) is not necessarily projective.
- We prove the existence of a projective indecomposable object P(b) and surjection

$$P(b) \twoheadrightarrow \Delta(b) \twoheadrightarrow L(b).$$

- Call the objects $\Delta(b)$ standard objects.
- Dually, define **costandard objects** ∇(*b*) using injective envelopes.

Theorem (original - see my thesis)

For each $b \in B$:

(i) The projective cover, P(b), of L(b) fits into a short exact sequence

$$0 o Q(b) o P(b) o \Delta(b) o 0$$

in which Q(b) has a filtration by quotients of $\Delta(b')$ satisfying b' > b.

(ii) The injective envelope, I(b), of L(b) fits into a short exact sequence

in which Q'(b) has a filtration by subobjects of $\nabla(b')$ satisfying b' > b.

Question

- (i) Under what conditions do projective objects have a filtration by standard objects.
- (ii) Under what conditions do injective objects have a filtration by costandard objects.

Application

Tilting theory

Homological stratification

A stratification of \mathcal{A} by a poset Λ is **homological** if each inclusion functor $i : \mathcal{A}_{\Lambda'} \hookrightarrow \mathcal{A}$ ($\Lambda' \subset \Lambda$) satisfies

 $\operatorname{Ext}_{\mathcal{A}}^k(X,Y) = \operatorname{Ext}_{\mathcal{A}}^k(i(X),i(Y)) \quad \text{ for all } k \in \mathbb{N}.$

Theorem (original/unpublished)

Let \mathcal{A} be a finite abelian category with a stratification by a poset Λ .

- (i) All projective objects in \mathcal{A} have a filtration by standard objects iff \mathcal{A} has a homological stratification and each $j_*^{\lambda} : \mathcal{A}_{\lambda} \to \mathcal{A}$ is exact.
- (ii) All injective objects in \mathcal{A} have a filtration by costandard objects iff \mathcal{A} has a homological stratification and each $j_i^{\lambda} : \mathcal{A}_{\lambda} \to \mathcal{A}$ is exact.

A more general result can be stated in terms of Brundan and Stroppels ε -stratified categories.

Special case: Highest Weight Categories

Let Λ be a poset.

Definition: Highest Weight Category (Cline, Parshall, Scott)

Suppose $\mathcal{A} \simeq \mathcal{A}$ -mod has simple objects $\{L_{\lambda}\}_{\lambda \in \Lambda}$. The category \mathcal{A} is a **highest weight category with respect to** Λ if there are objects $\{\Delta_{\lambda}\}_{\lambda \in \Lambda}$ satisfying

• Each Δ_{λ} fits into a short exact sequence

$$0 o K_{\lambda} o \Delta_{\lambda} o L_{\lambda} o 0$$

in which K_{λ} has a filtration by simple objects $L(\mu)$ in which $\mu < \lambda$.

② The projective cover, P_{λ} , of L_{λ} fits into a short exact sequence

$$0
ightarrow U_{\lambda}
ightarrow P_{\lambda}
ightarrow \Delta_{\lambda}
ightarrow 0$$

in which U_{λ} has a filtration by objects Δ_{μ} with $\mu > \lambda$.

Giulian Wiggins (USYD)

Stratifications of Abelian Categories

Special case: Highest Weight Categories

Theorem (Krause, 2017: Highest weight categories and recollements)

A k-linear abelian category A is a highest weight category with respect to the poset Λ if and only if A has a homological stratification by Λ in which every strata category has a unique simple object.