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Stratification of Topological Spaces

Stratification of a topological space
A stratification of a topological space X consists of a finite collection

{Xoatren
of disjoint, connected, locally closed subspaces (called strata), in
which
@ X =Uyea Xo
@ Each X, is a union of strata.
NB. Associated to such a stratification is the poset (A, <) defined

p< Nif X, C X;.
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Aim

@ Construct an analogue of this construction for abelian categories
i.e define a stratification of an abelian category by a poset
(A, ).

@ Need: Analogue of “attaching" two abelian categories. This will be
achieved by recollements.
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1982 Beilinson, Bernstein, Deligne: Faisceaux pervers

e This paper defines recollements of triangulated categories.
o Recollements of abelian categories are an abelian category
analogue of this definition.

1988 Cline, Parshall, Scott: Finite dimensional categories and highest
weight categories

1996 Cline, Parshall, Scott: Stratifying endomorphism algebras
1998 Agoston, Dlab, Lukacs: Stratified algebras
2018 Brundan, Stroppel: Semi-infinite highest weight categories
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Abelian categories

Let:
@ k be afield.
@ A be a k-linear abelian category.
Recall:
@ An object L € A is simple if L has no subobjects.
@ Let C be a class of objects in A (closed under isomorphisms). A
finite filtration of an object X € A by objects in C consists of a
chain of monomorphisms

OIXQ‘—>X1‘—>---‘—>X,7:X

in which X;/X;_4 € C for each i.
@ Afiltration of X by objects in C consists of a (possibly infinite)
chain of monomorphisms

0=Xo—=>Xg == Xyg—---

in which X = colim X and each X;/X;_4 € C.
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Playtime

Desiderata: What features would we want the “attaching" of two

abelian categories to satisfy?

Let Az and Ay be abelian categories.
We want to study abelian categories A in which:

@ There are fully faithful functors:

AZ i* A j!* AU

@ The essential image of /. does not intersect the essential image of
j!*-

@ Every object X € A has a filtration by objects in im i, U im ji,.

@ The essential image of i, is a Serre subcategory of A.
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Playtime

Slightly Stronger Desiderata

Let Az and Ay be abelian categories.
We want to study abelian categories A in which:

@ There are fully faithful functors:

AZ i A Jix -AU

@ Every simple object L € A is uniquely either of the form i.L’ (for
L' € Az) or ji, L' (for L' € Ay).

@ The essential image of i, is a Serre subcategory of A.
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Playtime: The case A7 ~ Ay ~ k-mod

The case A7y ~ Ay ~ k-mod
What categories A satisfy:

@ There are fully faithful functors

k-mod *I—*> A 2 kemod

with disjoint essential images.
@ Every object X € A has a filtration by objects in im i, U im j,.
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Playtime: The case A7 ~ Ay ~ k-mod

k-mod & k-mod

Consider the direct sum category k-mod & k-mod:
@ There are functors:

ir : k-mod — k-mod & k-mod; V— (V,0)
Jis : k-mod — k-mod & k-mod; V—(0,V)

@ The simple objects of k-mod & k-mod are (k, 0) and (0, k).
@ Every object (V, W) € k-mod & k-mod has a filtration

(0,0) = (V,0) — (V, W)
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Playtime: The case A7 ~ Ay ~ k-mod

(e — e)-mod

Consider the category, (e
Alternatively,

— e)-mod, of functors {x — y} — k-mod.

@ Objects: Linear maps V Lw
@ Morphisms: Commutative diagrams

-
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Playtime: The case A7 ~ Ay ~ k-mod

(e — e)-mod
@ There are functors:

Ix : k-mod — (e — e)-mod; V— (V-0
Jjis - k-mod — (e — e)-mod; V—(0-—YV)

@ The simple objects of (e — e)-mod are (k — 0) and (0 — k).

@ Every object (V I W) € (e — o)-mod has a filtration

0 - 0 < v
|
0 « W -

w

\
>

~-
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Definition: Recollement of Abelian Categories

Recollement of Abelian Categories
A recollement of A consists of categories and functors:

i Ji
i J

Az A Ay
it Jx

satisfying the conditions:

(R1) (i*,i,i") and (ji, J, j.) are adjoint triples.

(R2) The functors i, ji, j. are fully-faithful.

(R3) The functors satisfy jo i = 0 (and so by adjunction i*j; = 0 = i'j,).

(R4) For any object X € A, if j(X) = 0 then X is in the essential image
of /.
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Examples: Recollement of Abelian Categories

Direct sum of categories

i Ji
— —

' J
A—1 s AeB ——
— —

it Jx

where i and j; = j, are the inclusion functors, and /* = /' and j are
projection functors.
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Examples: Recollement of Abelian Categories

e — o Quiver Representations

ff Ji
— —
k-mod —— (e — e)-mod — 2 k-mod
— —
i Jx

where:

i :k-mod — Az-mod; V— (V-0

J :Ao-mod — k-mod; (VoW)—» W
i* :Ap-mod — k-mod; (VW)= V

i' :Ap-mod — k-mod; (v I W) — ker f
Ji ‘k-mod — Az-mod; Vi—(0—=YV)
Ji :k-mod — Apz-mod,; Vi (V—=V)
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Examples: Recollement of Abelian Categories

e — ¢ Quiver Representations (2)

ffs Ji
— —

k-mod —— (e — e)-mod — 2 k-mod

—— —
it I«

where:
i :k-mod — Az-mod; Vi—(0—V)
J :Ao-mod — k-mod; (VW)= V
i* :Az>-mod — k-mod,; (Vv I W) — cok f
i* :As-mod — k-mod; (VoW)—»Ww
Ji :k-mod — As-mod; V= (V-=V)
Jji ' k-mod — Ao-mod,; Vi— (V-0
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Examples: Recollement of Abelian Categories

e — o — o Quiver Representations

i* Ji
— —

(e — e)-mod - (e — @ — @)-mod — 1 k-mod

-« YA
it Ji
where:

i :Ao-mod — Az-mod,; (U=>V)—~(U—V —=0)
J :As-mod — k-mod; U=V W)—»W
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Examples: Recollement of Abelian Categories

A-Quiver Representations
@ Let A be a poset, thought of as a quiver.
@ Let A € A be maximal.
There is a recollement
i* Ji

A\ {A\}-mod — s Amod —1 5 k-mod

— —
i J
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Examples: Recollement of Abelian Categories

Constructible Sheaves

. 0
OI. l

Sh(Z.k) —— Sh(X,k) ——— Sh(U,k)
0;! Oj
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Properties of Recollements

Consider a recollement:

i* Ji
i J

Az A Ay
it Jx

@ The essential image of i is a Serre subcategory of A.
@ The adjunction maps

i*oi—ld—ioi
joji—=Id—joj

are isomorphisms.
(This is equivalent to i, ji, j. being fully-faithful)
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Properties of Recollements

Consider a recollement:
i* J

A ! A

For object X € A:
@ /o /*(X) is the largest quotient of A in the essential image of /.
@ joi'(X) is the largest subobject of A in the essential image of /.

Let AY be the full subcategory of A whose objects have no quotients
or subobjects in the essential image of .
The functor j restricts to an equivalence of categories

jAY = Ay
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Examples

(e — e)-mod

Consider the recollement:

e Ji
— —
' J
k-mod ——— (e — ¢)-mod ———— k-mod
— —
i Jx

where:

i :k-mod — Ao-mod; Vi— (V-0
J :Ap-mod — k-mod; (VoW)—»Ww

Then AY ~ {0 — W}. The functor j : AY — k-mod has quasi-inverse j.

Giulian Wiggins (USYD) Stratifications of Abelian Categories AusCat




Examples

(e — e)-mod

Consider the recollement:

e Ji
— —
' J
k-mod ——— (e — ¢)-mod ———— k-mod
— —
i Jx

where:

i :k-mod — Az-mod; Vi—(0— V)
J :Ao-mod — k-mod; (V->W)—V

Then AY ~ {V — 0}. The functor j : AY — k-mod has quasi-inverse ..
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Intermediate Extension Functor

Consider a recollement:

i* J
i )

Az A Ay
it Jx

What is the quasi-inverse of the equivalence j : AY — Ay,? \
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Intermediate Extension Functor

Consider a recollement:

A ! A / Ay

i Jx
Consider the isomorphisms:
Hom 4 (ji X, i X) =~ Hom 4, (X, j o i X) =~ Hom 4,(X, X).
Let 1x : iX — j.X be the morphism corresponding to 1x : X — X.

Intermediate Extension Functor
Define the functor ji, : Ay — A:

JuX = im(1x i X — i X) € A.

The image of ji, is in AY and ji, : Ay — AY is quasi-inverse to
j:AY = Ay.
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Examples: Intermediate Extension Functor

Consider the recollement:

i* J
k-mod ——— (e — e)-mod . kmod
I %
where:
i :k-mod — Ap-mod; Vi—(V—=0)
J :Ao-mod — k-mod; (Vo>W)—» W
ji :k-mod — As-mod; Vi—(0—V)
J+ ‘k-mod — As-mod, V= (V-=V)
Then

@ 1y :jiV — j.Vis the natural inclusion.
@ ji.:V—=(0—=V)ie. ji.=j.
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Examples: Intermediate Extension Functor

Consider the recollement:

i* Ji
k-mod ——— (e — e)-mod . kmod
I %
where:
i :k-mod — Az-mod; W— (00— W)
J :A2-mod — k-mod; (V->W)—V
Ji :k-mod — As-mod; V= (V-=V)
J« k-mod — Az-mod; V= (V=0
Then

@ 1y :jiV — j.Vis the natural surjection.
@ ji,: V= (V—=0)ie. ji =
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Classification of Simple Objects

Consider a recollement:

Every simple object in A is either of the form
@ (L) for a unique simple object L € Az,

or
@ ji.(L) for a unique simple object L € Ay.

AusCat

Stratifications of Abelian Categories
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Desiderata Revisited

Desiderata

Let Az and Ay be abelian categories.
We want to study abelian categories A in which:

@ There are fully faithful functors:

AZ I A Jix -AU

@ Every simple object L € A is uniquely either of the form i.L’ (for
L' € Az) or ji, L' (for L' € Ay).

@ The essential image of i, is a Serre subcategory of A.
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Definition: Stratification of Abelian Categories

Stratification of Abelian Categories

A stratification of A by a poset A consists of:
@ Abelian categories A, for each A € A (called strata categories).

@ Serre subcategories Ay C A for each downwards-closed
subposet of A’ C A.

satisfying conditions:

(S1) Ay =0, Ap = A, and A" € A implies Apn C Apr.

(S2) For each X\ € A and downwards-closed subset A’ C A in which
A € N is maximal, the embedding i : Ay 1xy — Ap fits into a

recollement
i* Ji
— —
i J
Anpy —— Av ——— A,
— —

it I«
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Definition: Stratification of Abelian categories

Stratification by singleton poset: {1}

i Ji
AQ)ZO —I> .A=.A{1} % .A1
I %
This is the data of an autoequivalence j : A — A.

i Ji

.A1 2./4{1} —’> AZA{LQ} % Ag
i i
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Definition: Stratification of Abelian Categories

Stratification by poset: 1 <2 <3

Apggy = A~ A3 — Az

!

Ao
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Definition: Stratification of Abelian Categories

Stratification by poset: 2 >1 < 3

/AS
A

~ Agy23)

- \A

Ay > Ay —— Apgy

At = Ay — Apgy
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Classification of Simple Objects

Let A have a stratification by a poset A.
@ For )\ € A, define the functors

JA AN = Afen | g = A

@ For each simple object L € A, there is a unique A € A and unique
simple object L, € A, in which L = j}L,.

Preorder on simple objects

Let {L(b)}pep be the set of simple objects in A (up to isomorphism).
There is a preorder < on B defined:

o If L(by) = jl'L,(by) and L(b) = jA LA(b2), then

by <bs  ifu<A
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Stratifications with enough projectives

Theorem (original - see my thesis)

A k-linear abelian category with a stratification is equivalent to a
category of finite dimensional modules of a finite dimensional
k-algebra if and only if the same is true for all strata categories.

Proof Sketch

@ For each simple object L(b) € A construct a projective cover
P(b) — L(b).

@ Then A ~ End(€D,5 P(b))?P-mod.

A,
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Example: Stratifications with enough projectives

(e — e)-mod

Simple objects: Li=0—kandL,=k—0
Projective indecomposables: Py =0 —kand P, =k — k

Injective indecomposables: h=k—kand h=k—0
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Standard and Costandard Objects

How to construct the projective cover P(b) — L(b)
@ Let L(b) = jALA(b).
@ Let P,(b) — Lx(b) be the projective cover in A,.
o Let A(b) = jPy(b).
Note that A(b) is indecomposable and A(b) — L(b) but A(b) is
not necessarily projective.

@ We prove the existence of a projective indecomposable object
P(b) and surjection

P(b) - A(b) — L(b).

@ Call the objects A(b) standard objects.

@ Dually, define costandard objects V(b) using injective
envelopes.
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Standard and Costandard Objects

Theorem (original - see my thesis)

For each b € B:
(i) The projective cover, P(b), of L(b) fits into a short exact sequence

0 — Q(b) — P(b) — A(b) — 0

in which Q(b) has a filtration by quotients of A(b’) satisfying
b > b.
(i) The injective envelope, I(b), of L(b) fits into a short exact
sequence
0— V(b) — I(b) - Q@ (b) = 0

in which Q’(b) has a filtration by subobjects of V(b') satisfying
b > b.
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Standard and Costandard objects

(i) Under what conditions do projective objects have a filtration by
standard objects.

(i) Under what conditions do injective objects have a filtration by
costandard objects.

Application
Tilting theory
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Standard and Costandard objects

Homological stratification

A stratification of .4 by a poset A is homological if each inclusion
functor i : An — A (N C A) satisfies

Ext’ (X, Y) = Ext}(i(X),i(Y))  forall k € N.

Theorem (original/unpublished)
Let A be a finite abelian category with a stratification by a poset A.
(i) All projective objects in .4 have a filtration by standard objects iff A
has a homological stratification and each j? : Ay, — A is exact.
(i) All'injective objects in A have a filtration by costandard objects iff
A has a homological stratification and each j* : A\ — A is exact.

A more general result can be stated in terms of Brundan and Stroppels
e-stratified categories.
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Special case: Highest Weight Categories

Let A be a poset.
Definition: Highest Weight Category (Cline, Parshall, Scott)

Suppose A ~ A-mod has simple objects {L}xca-
The category A is a highest weight category with respect to A if
there are objects { A} e satisfying

@ Each A, fits into a short exact sequence
0K, ,—>Ay—L,—0

in which K has a filtration by simple objects L(x) in which p < A.
©@ The projective cover, P,, of L, fits into a short exact sequence

O—-Uy,—P,—A,—0

in which U, has a filtration by objects A, with 12 > A.
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Special case: Highest Weight Categories

Theorem (Krause, 2017: Highest weight categories and
recollements)

A k-linear abelian category A is a highest weight category with respect
to the poset A if and only if 4 has a homological stratification by A in
which every strata category has a unique simple object.
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